共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stabilization of caveolin-1 by cellular cholesterol and scavenger receptor class B type I 总被引:6,自引:0,他引:6
Frank PG Marcel YL Connelly MA Lublin DM Franklin V Williams DL Lisanti MP 《Biochemistry》2002,41(39):11931-11940
3.
The cellular biology of scavenger receptor class B type I 总被引:10,自引:0,他引:10
The HDL receptor scavenger receptor class B type I plays an important role in meditating the uptake of HDL-derived cholesterol and cholesteryl ester in the liver and steroidogenic tissues. However, the mechanism by which scavenger receptor class B type I mediates selective cholesterol uptake is unclear. In hepatocytes scavenger receptor class B type I mediates the transcytosis of cholesterol into bile, appears to be expressed on both basolateral and apical membranes, and directly interacts with a PDZ domain containing protein that may modulate the activity of scavenger receptor class B type I. This suggests the involvement of scavenger receptor class B type I in higher order complexes in polarized cells. Scavenger receptor class B type I expression has been shown to alter plasma membrane cholesterol distribution and induce the formation of novel membrane structures, suggesting multiple roles for scavenger receptor class B type I in the cell. A close examination of scavenger receptor class B type I function in polarized cells may yield new insights into the mechanism of scavenger receptor class B type I-mediated HDL selective uptake and the effects of scavenger receptor class B type I on cellular cholesterol homeostasis. 相似文献
4.
Kocher O Birrane G Yesilaltay A Shechter S Pal R Daniels K Krieger M 《The Journal of biological chemistry》2011,286(28):25171-25186
The normal expression, cell surface localization, and function of the murine high density lipoprotein receptor scavenger receptor class B type I (SR-BI) in hepatocytes in vivo, and thus normal lipoprotein metabolism, depend on its four PDZ domain (PDZ1–PDZ4) containing cytoplasmic adaptor protein PDZK1. Previous studies showed that the C terminus of SR-BI (“target peptide”) binds directly to PDZ1 and influences hepatic SR-BI protein expression. Unexpectedly an inactivating mutation in PDZ1 (Tyr20 → Ala) only partially, rather than completely, suppresses the ability of PDZK1 to control hepatic SR-BI. We used isothermal titration calorimetry to show that PDZ3, but not PDZ2 or PDZ4, can also bind the target peptide (Kd = 37.0 μm), albeit with ∼10-fold lower affinity than PDZ1. This binding is abrogated by a Tyr253 → Ala substitution. Comparison of the 1.5-Å resolution crystal structure of PDZ3 with its bound target peptide (505QEAKL509) to that of peptide-bound PDZ1 indicated fewer target peptide stabilizing atomic interactions (hydrogen bonds and hydrophobic interactions) in PDZ3. A double (Tyr20 → Ala (PDZ1) + Tyr253 → Ala (PDZ3)) substitution abrogated all target peptide binding to PDZK1. In vivo hepatic expression of a singly substituted (Tyr253 → Ala (PDZ3)) PDZK1 transgene (Tg) was able to correct all of the SR-BI-related defects in PDZK1 knock-out mice, whereas the doubly substituted [Tyr20 → Ala (PDZ1) + Tyr253 → Ala (PDZ3)]Tg was unable to correct these defects. Thus, we conclude that PDZK1-mediated control of hepatic SR-BI requires direct binding of the SR-BI C terminus to either the PDZ1 or PDZ3 domains, and that binding to both domains simultaneously is not required for PDZK1 control of hepatic SR-BI. 相似文献
5.
The current study used the human Caco-2 cell line and mouse intestine to explore the topology of expression of the class B type I scavenger receptor (SR-BI) in intestinal cells. Results showed that intestinal cells expressed only the SR-BI isoform with little or no expression of the SR-BII variant. The expression of SR-BI in Caco-2 cells is differentiation dependent, with little or no expression in preconfluent undifferentiated cells. Analysis of Caco-2 cells cultured in Transwell porous membranes revealed the presence of SR-BI on both the apical and basolateral cell surface. Immunoblot analysis of mouse intestinal cell extracts demonstrated a gradation of SR-BI expression along the gastrocolic axis of the intestine, with the highest level of expression in the proximal intestine and decreasing to minimal expression levels in the distal intestine. Immunofluorescence studies with SR-BI-specific antibodies also confirmed this expression pattern. Importantly, the immunofluorescence studies also revealed that SR-BI immunoreactivity was most intense in the apical membrane of the brush border in the duodenum. The crypt cells did not show any reactivity with SR-BI antibodies. The localization of SR-BI in the jejunum was found to be different from that observed in the duodenum. SR-BI was present on both apical and basolateral surfaces of the jejunum villus. Localization of SR-BI in the ileum was also different, with little SR-BI detectable on either apical or basolateral membranes.Taken together, these results suggest that SR-BI has the potential to serve several functions in the intestine. The localization of SR-BI on the apical surface of the proximal intestine is consistent with the hypothesis of its possible role in dietary cholesterol absorption, whereas SR-BI present on the basolateral surface of the distal intestine suggests its possible involvement in intestinal lipoprotein uptake. 相似文献
6.
7.
Pregnane X receptor-agonists down-regulate hepatic ATP-binding cassette transporter A1 and scavenger receptor class B type I 总被引:4,自引:0,他引:4
Sporstøl M Tapia G Malerød L Mousavi SA Berg T 《Biochemical and biophysical research communications》2005,331(4):1533-1541
Pregnane X receptor (PXR) is the molecular target for a wide variety of endogenous and xenobiotic compounds. It regulates the expression of genes central to the detoxification (cytochrome P-450 enzymes) and excretion (xenobiotic transporters) of potentially harmful compounds. The aim of the present investigation was to determine the role of PXR in regulation of high-density lipoprotein (HDL) cholesterol metabolism by studying its impact on ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression in hepatocytes. ABCA1 and SR-BI are major factors in the exchange of cholesterol between cells and HDL. Expression analyses were performed using Western blotting and quantitative real time RT-PCR. Luciferase reporter gene assays were used to measure promoter activities. Total cholesterol was measured enzymatically after lipid extraction (Folch's method). The expression of ABCA1 and SR-BI was inhibited by the PXR activators rifampicin and lithocholic acid (LCA) in HepG2 cells and pregnenolone 16alpha-carbonitrile (PCN) in primary rat hepatocytes. Thus, PXR appears to be a regulator of hepatic cholesterol transport by inhibiting genes central to cholesterol uptake (SR-BI) and efflux (ABCA1). 相似文献
8.
9.
Separation of lipid transport functions by mutations in the extracellular domain of scavenger receptor class B,type I 总被引:5,自引:0,他引:5
Connelly MA De La Llera-Moya M Peng Y Drazul-Schrader D Rothblat GH Williams DL 《The Journal of biological chemistry》2003,278(28):25773-25782
Scavenger receptor class B, type I (SR-BI) shows a variety of effects on cellular cholesterol metabolism, including increased selective uptake of high density lipoprotein (HDL) cholesteryl ester, stimulation of free cholesterol (FC) efflux from cells to HDL and phospholipid vesicles, and changes in the distribution of plasma membrane FC as evidenced by increased susceptibility to exogenous cholesterol oxidase. Previous studies showed that these multiple effects require the extracellular domain of SR-BI, but not the transmembrane and cytoplasmic domains. To test whether 1) the extracellular domain of SR-BI mediates multiple activities by virtue of discrete functional subdomains, or 2) the multiple activities are, in fact, secondary to and driven by changes in cholesterol flux, the extracellular domain of SR-BI was subjected to insertional mutagenesis by strategically placing an epitope tag into nine sites. These experiments identified four classes of mutants with disruptions at different levels of function. Class 4 mutants showed a clear separation of function between HDL binding, HDL cholesteryl ester uptake, and HDL-dependent FC efflux on one hand and FC efflux to small unilamellar vesicles and an increased cholesterol oxidase-sensitive pool of membrane FC on the other. Selective disruption of the latter two functions provides evidence for multiple functional subdomains in the extracellular receptor domain. Furthermore, these findings uncover a difference in the SR-BI-mediated efflux pathways for FC transfer to HDL acceptors versus phospholipid vesicles. The loss of the cholesterol oxidase-sensitive FC pool and FC efflux to small unilamellar vesicle acceptors in Class 4 mutants suggests that these activities may be mechanistically related. 相似文献
10.
11.
Kocher O Yesilaltay A Cirovic C Pal R Rigotti A Krieger M 《The Journal of biological chemistry》2003,278(52):52820-52825
12.
13.
Aishah Al-Jarallah Bernardo L. Trigatti 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(12):1239-1248
High density lipoprotein (HDL) levels are inversely proportional to the risk of coronary heart disease. HDL mediates various anti-atherogenic pathways including reverse cholesterol transport from cells of the arterial wall to the liver and steroidogenic tissues. In addition HDL activates various intracellular signaling events that confer atheroprotection. The HDL receptor, scavenger receptor class B type I (SR-BI) has been implicated directly and indirectly in HDL induced signaling. The aim of this review is to summarize the role of SR-BI in HDL induced signaling in the vasculature. 相似文献
14.
Developmental and hormonal regulation of murine scavenger receptor, class B, type 1. 总被引:5,自引:0,他引:5
G Cao L Zhao H Stangl T Hasegawa J A Richardson K L Parker H H Hobbs 《Molecular endocrinology (Baltimore, Md.)》1999,13(9):1460-1473
The scavenger receptor, class B, type I (SR-BI), is the predominant receptor that supplies plasma cholesterol to steroidogenic tissues in rodents. We showed previously that steroidogenic factor-1 (SF-1) binds a sequence in the human SR-BI promoter whose integrity is required for high-level SR-BI expression in cultured adrenocortical tumor cells. We now provide in vivo evidence that SF-1 regulates SR-BI. During mouse embryogenesis, SR-BI mRNA was initially expressed in the genital ridge of both sexes and persisted in the developing testes but not ovary. This sexually dimorphic expression profile of SR-BI expression in the gonads mirrors that of SF-1. No SR-BI mRNA was detected in the gonadal ridge of day 11.5 SF-1 knockout embryos. Both SR-BI and SF-1 mRNA were expressed in the cortical cells of the nascent adrenal glands. These studies directly support SF-1 participating in the regulation of SR-BI in vivo. We examined the effect of cAMP on SR-BI mRNA and protein in mouse adrenocortical (Y1-BS1) and testicular carcinoma Leydig (MA-10) cells. The time courses of induction were strikingly similar to those described for other cAMP- and SF-1-regulated genes. Addition of lipoproteins reduced SR-BI expression in Y1-BS1 cells, an effect that was reversed by administration of cAMP analogs. SR-BI mRNA and protein were expressed at high levels in the adrenal glands of knockout mice lacking the steroidogenic acute regulatory protein; these mice have extensive lipid deposits in the adrenocortical cells and high circulating levels of ACTH. Taken together, these studies suggest that trophic hormones can override the suppressive effect of cholesterol on SR-BI expression, thus ensuring that steroidogenesis is maintained during stress. 相似文献
15.
Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics 总被引:7,自引:0,他引:7
Ueda Y Gong E Royer L Cooper PN Francone OL Rubin EM 《The Journal of biological chemistry》2000,275(27):20368-20373
Both in vitro and in vivo studies of scavenger receptor class B type I (SR-BI) have implicated it as a likely participant in the metabolism of HDL cholesterol. To investigate the effect of SR-BI on atherogenesis, we examined two lines of SR-BI transgenic mice with high (10-fold increases) and low (2-fold increases) SR-BI expression in an inbred mouse background hemizygous for a human apolipoprotein (apo) B transgene. Unlike non-HDL cholesterol levels that minimally differed in the various groups of animals, HDL cholesterol levels were inversely related to SR-BI expression. Mice with the low expression SR-BI transgene had a 50% reduction in HDL cholesterol, whereas the high expression SR-BI transgene was associated with 2-fold decreases in HDL cholesterol as well as dramatic alterations in HDL composition and size including the near absence of alpha-migrating particles as determined by two-dimensional electrophoresis. The low expression SR-BI/apo B transgenics had more than a 2-fold decrease in the development of diet-induced fatty streak lesions compared with the apo B transgenics (4448 +/- 1908 micrometer(2)/aorta to 10133 +/- 4035 micrometer (2)/aorta; p < 0.001), whereas the high expression SR-BI/apo B transgenics had an atherogenic response similar to that of the apo B transgenics (14692 +/- 7238 micrometer(2)/aorta) but 3-fold greater than the low SR-BI/apo B mice (p < 0.001). The prominent anti-atherogenic effect of moderate SR-BI expression provides in vivo support for the hypothesis that HDL functions to inhibit atherogenesis through its interactions with SR-BI in facilitating reverse cholesterol transport. The failure of the high SR-BI/apo B transgenics to have similar or even greater reductions in atherogenesis suggests that the changes resulting from extremely high SR-BI expression including dramatic changes in lipoproteins may have both pro- and anti-atherogenic consequences, illustrating the complexity of the relationship between SR-BI and atherogenesis. 相似文献
16.
17.
Kawasaki Y Nakagawa A Nagaosa K Shiratsuchi A Nakanishi Y 《The Journal of biological chemistry》2002,277(30):27559-27566
Testicular Sertoli cells phagocytose apoptotic spermatogenic cells in a manner depending on the membrane phospholipid phosphatidylserine (PS) expressed at the surface of the latter cell type. Our previous studies have indicated that class B scavenger receptor type I (SR-BI) is responsible for the PS-mediated phagocytosis by Sertoli cells. We examined here whether SR-BI binds directly to PS. A cell line acquired the ability to bind to PS-exposing apoptotic cells and to incorporate PS-containing liposomes when it was forced to express SR-BI. Furthermore, the extracellular domain of rat SR-BI fused with human Fc (SRBIecd-Fc) bound to PS with a dissociation equilibrium constant of 2.4 x 10(-7) m in a cell-free solid-phase assay, whereas other phospholipids including phosphatidylethanolamine, phosphatidylinositol, and phosphatidylcholine were poor binding targets. The binding activity was enhanced when CaCl(2) was included in the assay or when SRBIecd-Fc was pre-treated with N-glycanase. A portion of the extracellular domain spanning amino acid positions 33 and 191 (numbered with respect to the amino terminus) fused with Fc (SRBI33-191-Fc) showed activity and phospholipid specificity equivalent to those of SRBIecd-Fc. Finally, SRBI33-191-Fc bound to the surface of apoptotic cells with externalized PS, and the injection of SRBI33-191-Fc into the seminiferous tubules of live mice increased the number of apoptotic spermatogenic cells. These results allowed us to conclude that SR-BI is a phagocytosis-inducing PS receptor of Sertoli cells. 相似文献
18.
ApoE-dependent sterol efflux from macrophages is modulated by scavenger receptor class B type I expression 总被引:2,自引:0,他引:2
Macrophages express a number of proteins involved in sterol efflux pathways, including apolipoprotein E (apoE) and scavenger receptor class B type I (SR-BI). We have investigated a potential interaction between these two sterol efflux pathways in modulating overall macrophage sterol flux. We utilized an experimental system in which we increased expression of each of these proteins to a high physiologic range in order to perform our evaluation. We show that in apoE-expressing cells, a 4-fold increase in SR-BI expression leads to reduction of sterol and phospholipid efflux. SR-BI-mediated reduction in sterol efflux was only observed in cells that expressed endogenous apoE. In J774 cells that did not express apoE, a similar increase in SR-BI level led to increased sterol efflux. The divergent response of sterol efflux after increased SR-BI was maintained in the presence of a number of structurally diverse extracellular sterol acceptors. Increased SR-BI expression also enhanced sterol efflux to exogenously added apoE. Investigation of a potential mechanism for reduced efflux in apoE-expressing cells indicated that SR-BI expression reduced macrophage apoE by accelerating the degradation of newly synthesized apoE. This led to decreased secretion of apoE and reduced the fraction of apoE sequestered on the cell surface. Thus, enhanced SR-BI expression in macrophages can reduce the cellular level and secretion of apoE by accelerating degradation of the newly synthesized protein. This reduction of endogenous apoE is accompanied by reduced sterol efflux from macrophages. 相似文献
19.
Johnson MS Johansson JM Svensson PA Aberg MA Eriksson PS Carlsson LM Carlsson B 《Biochemical and biophysical research communications》2003,312(4):1325-1334
Scavenger receptor class B type I (SR-BI) is an HDL receptor that mediates selective HDL lipid uptake. Peroxisomes play an important role in lipid metabolism and peroxisomal targeting signal type 1 (PTS1)-containing proteins are translocated to peroxisomes by the peroxisomal targeting import receptor, Pex5p. We have previously identified a PTS1 motif in the intracellular domain of rat SR-BI. Here, we examine the possible interaction between Pex5p and SR-BI. Expression of a Flag-tagged intracellular domain of SR-BI resulted in translocation to the peroxisome as demonstrated by double labeling with anti-Flag IgG and anti-catalase IgG analyzed by confocal microscopy. Immunoprecipitation experiments with anti-SR-BI antibody showed that Pex5p co-precipitated with SR-BI. However, when an antibody against Pex5p was used for immunoprecipitation, only the 57kDa, non-glycosylated form, of SR-BI co-precipitated. We conclude that the PTS1 domain of SR-BI is functional and can mediate peroxisomal interaction via Pex5p, in vitro. 相似文献
20.
Zhang Y Ahmed AM Tran TL Lin J McFarlane N Boreham DR Igdoura SA Truant R Trigatti BL 《Molecular membrane biology》2007,24(5-6):442-454
The scavenger receptor SR-BI plays an important role in the hepatic clearance of HDL cholesterol and other lipids, driving reverse cholesterol transport and contributing to protection against atherosclerosis in mouse models. We characterized the role of endocytosis in lipid uptake from HDL, mediated by the human SR-BI, using a variety of approaches to inhibit endocytosis, including hypertonic shock, potassium or energy depletion and disassembly of the actin cytoskeleton. Our studies revealed that unlike mouse SR-BI, human SR-BI-mediated HDL-lipid uptake was reduced by inhibition of endocytosis. This was not dependent on the cytoplasmic C-terminus of SR-BI. Monitoring the uptake of both the protein and lipid components of HDL revealed that although overall lipid uptake was decreased, the degree of selective lipid uptake was increased. These data suggest that that endocytosis is a dynamic regulator of SR-BI's selective lipid uptake activity. 相似文献