首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of infection with Septoria nodorum of leaves belowthe flag leaf on the translocation of 14C-labelled assimilatesin wheat was followed. In the vegetative phase export of assimilatesfrom a single infected leaf was reduced, but export from a healthyleaf on a heavily infected plant was increased. During the reproductivephase export from leaves was not affected by disease. Heavyleaf infection had little effect on the patterns of distributionof export especially during reproductive growth when only changesin the proportion of assimilates in leaf sheaths and tillerstumps were found. Distribution of export from a healthy flagleaf on an otherwise heavily infected plant was unaltered. Duringvegetative growth changes in the distribution of assimilateswere more marked, the greatest changes occurring when a singleinfected leaf on a healthy plant was exposed to 14CO2.  相似文献   

2.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

3.
GAUNT  R. E.; MANNERS  J. G. 《Annals of botany》1971,35(5):1141-1150
The effect of infection by Ustilago nuda on the distributionof 14C-assimilates in spring wheat plants at several stagesof growth was examined Only small differences were detectedbetween healthy and infected plants at the early stages, butthere were marked differences between the older plants The amountof assimilate exported by the fed leaf appeared to be dependenton the demand for assimilates in all plants, and was greatestduring a period of rapid growth of host or parasite, such asthe sporulation of the fungus in the infected ear The distributionof exported assimilates from the fed leaf of healthy plantsvaried with the position of the fed leaf, its stage of development,and the age of the plant, the pattern was very similar to thatfound in other plant diseases This pattern was altered by thepresence of the pathogen, which acted as an alternative siteof accumulation Totally different sites received 14C-labelledassimilates in infected plants, in some cases assimilates weretranslocated over unusually long distances, for example fromthe main shoot flag leaf to infected tiller ears. The differencein distribution correlated well with the differences in growthcaused by the pathogen. In addition, the ratio between the radioactivityin alcohol-insoluble and that in alcohol-soluble compounds wasaffected by the infection, in young infected plants more radioactivitywas present in the insoluble fraction and in older infectedplants in the soluble fraction  相似文献   

4.
The relationship between plant water status and distributionof 14C-labelled assimilates in cacao (Theobroma cacao L.) wasevaluated after 14CO2 pulse labelling leaves of seedlings subjectedto varying levels of water deficiency. The proportion of 14Cexported by source leaves was strongly affected by seedlingwater status. An increasing proportion of labelled assimilatesremained in source leaves at both 24-h and 72-h harvests aswater stress intensity increased. Water stress reduced the distributionof exported label to leaves and to the expanding flush in particularbut increased the proportion of label in stems and roots. Theresults suggest that current photoassimilates may be temporarilystored in source leaves and stems of cacao seedlings duringperiods of plant water deficit. The stress-induced changes inpartitioning of labelled carbon were in concordance with changesin shoot to root biomass ratios, which was likely due to greaterreduction in growth of above-ground organs to that of roots. Theobroma cacao L, assimilate partitioning, cacao, 14C-photoassimilate, water stress, water potential  相似文献   

5.
Treatment with DC (6 µA plant-1) increased uptake andtranslocation of 36C1- ions, both to the leaves and to the stemsof 15-d-old Chenopodium rubrum plants. In leaves the distributionof these ions remained unchanged in comparison with untreatedcontrols, however, in stems a decreasing gradient from the shootapex to the base of both ions was formed as a consequence ofDC treatment. Neither uptake nor distribution of l4C-sucroseand 14C-labelled assimilates were affected by DC treatment. (Received April 10, 1995; Accepted September 18, 1995)  相似文献   

6.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

7.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

8.
Single leaves, ears, or shoots of timothy (Phleum pratense L.)were exposed in light to 14CO2, then left overnight, after whichthe plants were autoradiographed. The following conclusionswere drawn. Actively growing leaves retain all their assimilatesand import from older ones. Fully expanded leaves export butdo not import assimilates. Export begins before leaf expansionis complete, so import and export may for a time be simultaneous.Exports go at first to younger leaves and to roots, accumulatingat meristems. At later stages, exports move downwards ratherthan upwards. Buds and small tillers import from older shoots,but large tillers do not import from other shoots or exportto other large ones. Ears assimilate while still green, andimport assimilates from their associated flag leaves. Exportsfrom other leaves on flowering stems move downwards. These findings agree in general with those from other plants:they are discussed in relation to the vascular system of thegrass plant, and the need for further studies, particularlyquantitative ones, is emphasized.  相似文献   

9.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

10.
Green pepper (Capsicum annuum cv. Bell Boy) plants were exposedin chambers to low (2%) oxygen and controlled carbon dioxideconcentrations. Vegetative and fruiting plants showed short-termincreases in net photosynthesis in low oxygen or elevated carbondioxide (up to 900 µl CO2 l–1). Photosynthesis ofyoung vegetative plants increased in low oxygen in the short-termbut there was no long-term benefit. Low oxygen enhancement ofphotosynthesis declined with time and after 10 d, leaf areaand root dry weight were less than in plants grown in normalair. Labelled assimilates were translocated from leaves to otherregions at similar rates in low oxygen and normal air. Low oxygenreduced respiratory losses from leaves and reduced the proportionof soluble carbohydrate converted to polysaccharide in all plantparts. Thus, low-oxygen environments decrease the utilisationof assimilates which then may lead to inhibition of photosynthesis. Capsicum annuum, photosynthesis, photorespiration, translocation, utilization of assimilates  相似文献   

11.
Young plants of Banksia hookeriana were grown in acid-washedsand with adequate phosphate and water supply, and a proportionwere inoculated with Phytophthora cinnamomi. There were no majordifferences in growth between uninoculated and infected plants,but there was a large increase in uptake of 32P with increasingroot disease. In healthy plants 32P uptake was greatest in youngleaf tissue, but in diseased plants labelled phosphate was directedmore towards older leaves where the activity was almost twicethat of young leaves. Enhanced uptake with disease was ascribed to possible blockageof the ‘message’ or ‘signal’ of phosphatetranslocation from shoot to root, such that the diseased rootincorrectly treated the shoot as P deficient and increased Puptake. Key words: Banksia hookeriana, Proteaceae, 32P uptake, Phytophthora cinnamomi  相似文献   

12.
WOLF  S.; MARANI  A.; RUDICH  J. 《Annals of botany》1990,66(5):513-520
The effects of temperature and photoperiod on d. wt partitioningand 14C translocation were studied in three potato varieties.High temperatures and long days enhanced plant growth in termsof plant height and number of leaves, and also affected d. wtpartitioning between the plant organs. However, no temperatureeffect was noted on total plant d. wt, nor on the export of14C from the source leaf. Translocation of 14C to the vegetativeorgans (leaves and stems) was greater at higher temperatures,while translocation to the tubers was less under these conditions.We suggest that, under the temperature regimes studied, themain effect of high temperature is on assimilate partitioningand not on total plant productivity. Differences in responseto high temperatures were observed among varieties, with Norchipshowing the least and Up-to-Date showing the most sensitivity. High temperature, partitioning of assimilates, 14C-translocation, potato, Solanum tuberosum var. Desirèe, Solanum tuberosum var. Norchip, Solanum tuberosum var. Up-to-Date  相似文献   

13.
A well-developed infection of Yellow Rust on a leaf of springwheat (Jufy I) caused the assimilation of 14CO2 by that leafto decrease to 43.5 per cent of that of an uninfected leaf.Over a period of three hours translocation of 14C from an infectedleaf was only 0.87 per cent of that from a control leaf. Whencontrol plants were kept in the light for periods up to 16 hoursafter assimilating 14CO2 translocation continued at a steadyrate, whereas there was only negligible translocation from infectedleaves after the first few hours. The retention of labelledassimilates in the infected leaf could be partly, but not completely,accounted for by a conversion of assimilates to an alcohol-insolubleform. Rust infection had no effect on the distribution patternof 14C to other leaves from one which had assimilated 14CO2.In contrast to the marked retention of assimilate by an infectedleaf, such a leaf was unable to distort the normal distributionby attracting assimilates from the other leaves.  相似文献   

14.
Distribution of assimilates in cultivars of spring barley with different resistance against powdery mildew (Erysiphe graminis f. sp. hordei) Transport and distribution of radioactive labelled assimilates in spring barley cultivars with different degrees of resistance to powdery mildew were studied after 14CO2-treatment of single leaves. Plants of the cultivars ‘Amsel’ (susceptible), ‘Asse’ (adult plant resistant), and ‘Rupee’ (resistant) were analyzed at the vegetative growth stage (5. leaf unfolded) and the generative growth stage (anthesis). At the vegetative growth stage the assimilate export from the mildew inoculated 5. leaf of ‘Amsel’ and ‘Rupee’ is decreased; in ‘Asse’, there is no considerable change of assimilate distribution due to infection. At the generative growth stage the assimilate export from the infected flag leaf of ‘Amsel’ is reduced when the fungus, is sporulating. In the cultivar ‘Asse’ the assimilates are bound at the infection site until the seventh day after inoculation, then the transport of assimilates to the ear is increased. In ‘Rupee’ mildew inoculation causes an enhanced assimilate transport to the ear. The changes in assimilate distribution due to mildew inoculation are discussed with respect to the different types of host-parasite-interactions and the source-sink-activities in the different cultivars.  相似文献   

15.
Assimilate Distribution in Poa annua L.   总被引:1,自引:0,他引:1  
The carbon economy of a flowering tiller of Poa annua L. hasbeen examined over the period from inflorescence emergence tograin shedding. The total import of 14C by the inflorescencereached a maximum at late grain filling but the relative importof assimilate was greatest 14 days after its appearance andrepresented 20–25 per cent of that assimilated by theinflorescence itself. The inflorescence continued to be an importantassimilatory organ after grain ripening when it exported morethan 50 per cent of its assimilate to the stem, roots and othertillers. The patterns of distribution of assimilates from the youngestuppermost and the oldest green leaf of the reproductive tillerwere largely determined by the stage of development of the inflorescence.The youngest leaf mainly supported the inflorescence up to theend of the grain-filling stage but then supplied assimilatesbasally to the roots and adjacent tillers. The oldest greenleaf supported the growth of the stem and the inflorescenceup to anthesis but after this supplied assimilates mainly tothe roots and tillers. Removal of grains or the entire inflorescence only 1 h beforesupplying 14CO2 greatly reduced the rate of fixation of 14CO2and the export of radiocarbon, as well as changing the patternof distribution of assimilates within the plant. The significanceof these results is discussed and comparisons made with cerealsand perennial grasses.  相似文献   

16.
The distribution of 14C-labelled assimilate after infectionof the dwarf bean plant with Pseudomonas phaseolicola was followed.Infection of a single unifoliate leaf did not affect the totalfixation of 14CO2 by unifoliates during the assimilation period.Fixation was maximal in unifoliates in the early stages of growthbut declined as trifoliates expanded. Unifoliates on infectedplants retained a greater proportion of assimilated 14carbonthan leaves on healthy plants.The pattern of distribution ofexported assimilate was not altered in the early stages of infection,the root and apex acting as the major sinks. As the diseasedeveloped, the first trifoliate leaf, unlike similar leaveson healthy plants, continued to import assimilate apparentlyat the expense of the root. Fixation by the first trifoliateand the distribution of assimilate from this leaf were not alteredby infection of a single unifoliate leaf. At no stage duringdevelopment of the disease was there any evidence of translocationof assimilate to either inoculated or non-inoculated unifoliates.  相似文献   

17.
Effects of the interaction between assimilate availability andsink demand on the metabolism of 14C assimilates in tomato leaveshave been examined in plants where the source—sink relationshipof assimilates was simplified to one leaf and one fruit truss. During experimentation the source leaf was exposed to either80 or 20 W m–2 (PAR), while the truss was either retainedor removed. Under these four source-sink conditions, a timecourse study was made on 14C assimilate distribution in thesource leaf over a period of 23 h after pulse feeding with 14CO2. While truss removal caused a temporary increase of 14C sucrosein leaves under both irradiances, the principal assimilatesaccumulated were starch and hexoses. Decreased 14C export followingtruss removal was observed within a day in well-illuminatedleaves but after 3 days in leaves under low light. The accumulationof 14C sucrose at the end of the light period was affected bytruss removal in high light leaves only 3 days later. These observations suggest that while the compartmentation ofnewly fixed assimilate was affected rapidly by the change ofsource—sink relationship, carbon export, as measured by14C loss, was affected only gradually. The possible effect of sucrose accumulation on photosynthesisis discussed.  相似文献   

18.
Field-grown potatoes were subjected to N deficiency (no appliedN) or received high levels of N (240 kg N ha–1) at planting.The effects of these treatments were monitored at five stagesduring growth in terms of the allocation of photosynthate withinthe leaf, and the export and partitioning of carbon to differentsinks. N deficiency significantly raised the starch concentrationin all organs of the plants, particularly in leaves and stems,and as a consequence the total amount of starch in the canopyof the low N plants remained greater than that of the high Nplants until approx. 100 days after planting (DAP). The totalamounts of carbohydrates, protein and amino acids were calculatedfor each treatment and these values were used to derive a balancesheet for major reserves. Net losses of reserves occurred fromthe canopy in both treatments in the period 97–133 DAP,although these were shown to represent < 3 per cent of thetotal gain in tuber dry weight for the season. Partitioning of 14C assimilates was examined in whole plantsand also in single leaves. Reduced partitioning to the tubers,seen in high N plants throughout their growth, was shown tobe due to decreased percentage export by the leaf and accumulationof exported 14C by the stems. Partitioning to the tubers inlow N plants increased prior to senescence when 87 per centof the fixed 14C was exported within 24 h, 80 per cent of thisto the tubers. The equivalent values for the high N plants were77 and 60 per cent respectively. Increased percentage exportcoincided with decreased allocation to starch in the leaf, anda link between these processes is suggested. N also significantlyaltered the allocation of 14C within the leaf and may have influencedthe degradation of starch in the dark to a greater degree thanits synthesis in the light. The enzymes sucrose phosphate synthase (SPS), and starch synthasewere measured concurrently with partitioning. High N plantsshowed higher rates of activities of each of the enzymes althoughboth enzymes showed a similar pattern of development over theseason, irrespective of N treatment. The data are discussed in the light of conflicting reports concerningthe influence of N on translocation and partitioning. 14C assimilates, carbohydrates, nitrogen, potato (Solanum tuberosum L.), protein  相似文献   

19.
The partitioning of photosynthetically fixed carbon betweencarbohydrate fractions and the processes of export and storagewere compared in mature leaf blades and sheaths of the grassPoa pratensis L. Most of the fixed carbon was destined for exportfrom the leaf blade with only 1% of the carbon fixed duringthe photoperiod being stored after 24 h. Although most of theassimilates imported to the sheath from the blade were subsequentlyexported, there was some unloading and storage of assimilates.Autoradiography was used to compare the translocation of 14C-labelledassimilates through non-fed areas of leaf blade and sheath andrevealed that the veins in the sheath showed a greater capacityfor storage of assimilates compared to the leaf blade. Biphasickinetics of sucrose and glucose uptake were observed in segmentsof leaf blade and sheath. Although similar carriers for eachof the sugars appear to exist in the blade and sheath, the rateof uptake via these carriers was significantly lower in thesheath compared to the blade. Assuming that unloading proceedsvia a symplastic pathway, it would appear that the conversionof sucrose to starch in the sheath could be an important meansof regulating unloading and in determining sink strength ofthe sheath. It is concluded that although the net amount ofsugars unloaded in the sheath is small, the storage of assimilatesin the vein network could be an important means of bufferingchanges in sucrose concentration in the translocate during periodsof fluctuating assimilation. Key words: Poa pratensis, autoradiography, sugar uptake, leaf blade, leaf sheath  相似文献   

20.
A general, heavy infection of Yellow Rust(Puccinia StriiformisWestend.) on the leaf laminas of the spring wheat (Triticumvulgare Host) Jufy I, unlike an infection on one leaf only,modified the distribution pattern of 14C-labelled assimilatetranslocated from the second leaf: the proportion moving tothe roots (in older plants also to the tillers) was decreased,and that moving to the leaves was increased. The proportionof the assimilate translocated out of an infected leaf of asuch plant was, however more than that observed when that leafwas the only one infected, though still less than that froma corresponding leaf in a healthy plant. Age of leaf did notgreatly affect the distribution pattern. The effect of infection on the distribution pattern of assimilatefrom other leaves 15 days after inoculation was comparable tothe effect on that from the second leaf at the same intervalafter inoculation. In the case of the upper leaves the proportionmoving to the tillers was appreciably reduced by infection.These results are considered in relation to data obtained froma parellel growth analysis experiment, with which they are ingood agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号