首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reports in the 1970s from several laboratories revealed that the affinity of photosynthetic machinery for dissolved inorganic carbon (DIC) was greatly increased when unicellular green microalgae were transferred from high to low-CO2 conditions. This increase was due to the induction of carbonic anhydrase (CA) and the active transport of CO2 and/or HCO3 which increased the internal DIC concentration. The feature is referred to as the `CO2-concentrating mechanism (CCM)'. It was revealed that CA facilitates the supply of DIC from outside to inside the algal cells. It was also found that the active species of DIC absorbed by the algal cells and chloroplasts were CO2 and/or HCO3 , depending on the species. In the 1990s, gene technology started to throw light on the molecular aspects of CCM and identified the genes involved. The identification of the active HCO3 transporter, of the molecules functioning for the energization of cyanobacteria and of CAs with different cellular localizations in eukaryotes are examples of such successes. The first X-ray structural analysis of CA in a photosynthetic organism was carried out with a red alga. The results showed that the red alga possessed a homodimeric β-type of CA composed of two internally repeating structures. An increase in the CO2 concentration to several percent results in the loss of CCM and any further increase is often disadvantageous to cellular growth. It has recently been found that some microalgae and cyanobacteria can grow rapidly even under CO2 concentrations higher than 40%. Studies on the mechanism underlying the resistance to extremely high CO2 concentrations have indicated that only algae that can adopt the state transition in favor of PS I could adapt to and survive under such conditions. It was concluded that extra ATP produced by enhanced PS I cyclic electron flow is used as an energy source of H+-transport in extremely high-CO2 conditions. This same state transition has also been observed when high-CO2 cells were transferred to low CO2 conditions, indicating that ATP produced by cyclic electron transfer was necessary to accumulate DIC in low-CO2 conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Changes of some photosynthetic properties of high-CO2 grown cells of Chlorella pyrenoidosa during adaptation to low-CO2 conditions have been investigated. The Km value of photosynthesis of the high-CO2 grown cells for dissolved inorganic carbon was 3.3 millimolar and decreased to 25 to 30 micromolar within 4 hours after transferring to air. In the presence of saturating CO2 concentrations the photosynthetic activity of the high-CO2 grown cells was 1.5 times as high as that of the low-CO2 grown cells. There was a significant rise of the photosynthetic activity during adaptation of the high-CO2 grown cells to air, followed by a steady decrease. The activity of ribulose 1,5-bisphosphate carboxylase/oxygenase in both the high- and low-CO2 grown cells was close to the photosynthetic activity of the cells. The concentration of ribulose 1,5-bisphosphate (RuBP) was higher in the low-CO2 adapting and low-CO2 grown cells than in the high-CO2 grown cells regardless of the photosynthetic rate. This seems to be due to an increased RuBP regeneration activity during adaptation followed by maintenance of the new higher concentration. The RuBP level always exceeded the concentration of ribulose 1,5-bisphosphate carboxylase/oxygenase RuBP binding sites in both the high- and low-CO2 grown cells at any dissolved inorganic carbon concentration.  相似文献   

3.
Quantum requirements of photosynthetic oxygen evolution at 682 nm and fluorescence spectra at liquid nitrogen temperature (77 K), were investigated in Dunaliella tertiolecta, Chlamydomonas reinhardtii C-9, Chlorella vulgaris 11g, Chlorella vulgaris C3, and Chlorella pyrenoidosa 8b grown under low- and high-CO2 conditions. Dunaliella, Chlamydomonas and C. vulgaris 11g show higher quantum requirements and a higher ratio of F710–740/F680–695 fluorescence when grown under low-CO2 conditions, indicating a change in excitation energy distribution towards PS I. In C. pyrenoidosa the quantum requirement for low-CO2 grown cells is higher than in high-CO2 grown cells, but there was practically no change in the fluorescence ratio. In C. vulgaris C3, the quantum requirements of low- and high-CO2 grown cells are the same, but the fluorescence ratio is higher in high-CO2 grown cells than in low-CO2 grown cells. These results indicate that most of the low-CO2 grown cells require more PS I light than high-CO2 grown cells. It is possible that this energy is used for cyclic electron flow. In C. vulgaris C 3, a mechanism may exist for excitation energy distribution which leads to the same quantum requirements under low- and high-CO2 conditions.  相似文献   

4.
The pyrenoid is a prominent proteinaceous structure found in the stroma of the chloroplast in unicellular eukaryotic algae, most multicellular algae, and some hornworts. The pyrenoid contains the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase and is sometimes surrounded by a carbohydrate sheath. We have observed in the unicellular green alga Chlamydomonas reinhardtii Dangeard that the pyrenoid starch sheath is formed rapidly in response to a decrease in the CO2 concentration in the environment. This formation of the starch sheath occurs coincidentally with the induction of the CO2-concentrating mechanism. Pyrenoid starch-sheath formation is partly inhibited by the presence of acetate in the growth medium under light and low-CO2 conditions. These growth conditions also partly inhibit the induction of the CO2-concentrating mechanism. When cells are grown with acetate in the dark, the CO2-concentrating mechanism is not induced and the pyrenoid starch sheath is not formed even though there is a large accumulation of starch in the chloroplast stroma. These observations indicate that pyrenoid starch-sheath formation correlates with induction of the CO2-concentrating mechanism under low-CO2 conditions. We suggest that this ultrastructural reorganization under lowCO2 conditions plays a role in the CO2-concentrating mechanism C. reinhardtii as well as in other eukaryotic algae.  相似文献   

5.
The degree of unsaturation of fatty acids was higher in Chlorella vulgaris 11h cells grown with air (low-CO2 cells) than in the cells grown with air enriched with 2% CO2 (high-CO2 cells). The change in the ratio of linoleic acid to α-linolenic acid was particularly significant. This change of the ratio was observed in four major lipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylcholine, and phosphatidylethanolamine). The relative contents of lipid classes were essentially the same both in high-CO2 and low-CO2 cells. After high-CO2 cells were transferred to low CO2 condition, total amount of fatty acids remained constant but the relative content of α-linolenic acid increased during a 6-hour lag phase in growth with concomitant decreases in linoleic and oleic acids. When low-CO2 cells were transferred to high CO2 condition, total amount of fatty acids and relative content of oleic acid increased significantly. The amount of α-linolenic acid remained almost constant, while the amounts of palmitic, oleic, and linoleic acids increased. Similar, but smaller, changes in fatty acid compositions were observed in two species of green algae Chlamydomonas reinhardtii and Dunaliella tertiolecta. However, no difference was found in Euglena gracilis, Porphyridium cruentum, Anabaena variabilis, and Anacystis nidulans.  相似文献   

6.
Unicellular algae grown under low-CO2 conditions (0.03% CO2) have developed a means of concentrating CO2 at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Cells with the CO2-concentrating mechanism (CCM) acquire the ability to accumulate inorganic carbon to a level higher than that obtained by simple diffusion. To identify proteins which are involved in the organization of the CCM, cells of Scenedesumus obliquus and Chlorella vulgaris grown in high CO2 (5% CO2 in air) were transferred to low-CO2 (0.03%) conditions in the presence of 35SO inf4 sup2? and, thereafter, polypeptides labeled with 35S were detected. Under low-CO2 conditions the inducton of 36-, 39-, 94- and 110- to 116kDa polypeptides were particularly observed in S. obliquus and 16-, 19-, 27-, 36-, 38- and 45-kDa polypeptides were induced in C. vulgaris. Western blots with antibodies raised against 37-kDa subunits of the periplasmic carbonic anhydrase (CA) of Chlamydomonas reinhardtii showed immunoreactive bands with the 39-kDa polypeptide in the whole-cell homogenates from S. obliquus and with 36 and 38-kDa polypeptides in both high- and low-CO2grown cells of C. vulgaris. Anti-pea-chloroplast CA antibodies cross-reacted with a single polypeptide of 30 kDa in the whole-cell homogenates but not with thylakoid membranes. The CA activity was associated with soluble and membrane-bound fractions, except thylakoid membranes.  相似文献   

7.
The apparent photosynthetic affinity of A. variabilis to CO2 is greatly affected by the CO2 concentration in the medium during growth. Halfmaximal rate of photosynthetic O2 evolution is achieved at 10 M and 100 M inorganic carbon (Cinorg) in cells grown at low-CO2 (air) and high CO2 (5% v/v CO2 in air), respectively, whilst the maximum rate of photosynthesis is similar in both cases. Both high- and low-CO2-grown Anabaena accumulate Cinorg within the cell; however, the rate of accumulation and the steady-state internal Cinorg concentration reached is much higher in low as compared with high-CO2-grown cells. It is suggested that Anabaena cells actively accumulate Cinorg. Measurements of the kinetics of Cinorg transport indicate that the affinity of the transport mechanism for Cinorg is similar (Km(Cinorg(150 M) in both high- and low-CO2-grown cells. However, V max is 10-fold higher in the latter case. It is suggested that this higher V max for transport is the basis of the superior capability to accumulate Cinorg and the higher apparent photosynthetic affinity for external Cinorg in low-CO2-grown Anabaena. Carbonic anhydrase activity was not detectable in Anabaena, yet both photosynthetic affinity to Cinorg in the medium (but not V max) and the rate of accumulation of Cinorg were inhibited by the carbonic-anhydrase inhibitor ethoxyzolamide.Abbreviations Cinorg inorganic carbon - PEP phosphoenol pyruvate - RuBP ribulose-1,5-bisphosphate CIW-DPB Publication No. 682  相似文献   

8.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

9.
Effects of CO2 concentration during growth on intracellular structure were studied with ftve species of Chlorella and Scenedesmus obliquus. Cells grown under ordinary air conditions (low-CO2 cells) had a well developed pyrenoid surrounded by starch, while those grown under high CO2 conditions (high-CO2 cells) had a less developed pyrenoid or no detectable pyrenoid. Two mitochondria, one at each side of the neck of the projection of the chloroplast close to the pyrenoid, were found in low CO2 cells of C. vulgaris 11h. Usually, lamellar stacks extended in parallel in the chloroplast of low-CO2 cells of C. vulgaris 11h, while a grana-like structure was found in high-CO2 cells. However, in C. pyrenoidosa, grana like structures were found more commonly in low-CO2 cells than in high-CO2 cells. These results suggest that development of pyrenoid starch is generally correlated with growth under low CO2 conditions, whereas CO2-effects on lamellar stacking are species dependent.  相似文献   

10.
Mangroves, woody halophytes restricted to protected tropical coasts, form some of the most productive ecosystems in the world, but their capacity to act as a carbon source or sink under climate change is unknown. Their ability to adjust growth or to function as potential carbon sinks under conditions of rising atmospheric CO2 during global change may affect global carbon cycling, but as yet has not been investigated experimentally. Halophyte responses to CO2 doubling may be constrained by the need to use carbon conservatively under water-limited conditions, but data are lacking to issue general predictions. We describe the growth, architecture, biomass allocation, anatomy, and photosynthetic physiology of the predominant neotropical mangrove tree, Rhizophora mangle L., grown solitarily in ambient (350 ll–1) and double-ambient (700 ll–1) CO2 concentrations for over 1 year. Mangrove seedlings exhibited significantly increased biomass, total stem length, branching activity, and total leaf area in elevated CO2. Enhanced total plant biomass under high CO2 was associated with higher root:shoot ratios, relative growth rates, and net assimilation rates, but few allometric shifts were attributable to CO2 treatment independent of plant size. Maximal photosynthetic rates were enhanced among high-CO2 plants while stomatal conductances were lower, but the magnitude of the treatment difference declined over time, and high-CO2 seedlings showed a lower Pmax at 700 ll–1 CO2 than low-CO2 plants transferred to 700 ll–1 CO2: possible evidence of downregulation. The relative thicknesses of leaf cell layers were not affected by treatment. Stomatal density decreased as epidermal cells enlarged in elevated CO2. Foliar chlorophyll, nitrogen, and sodium concentrations were lower in high CO2. Mangroves grown in high CO2 were reproductive after only 1 year of growth (fully 2 years before they typically reproduce in the field), produced aerial roots, and showed extensive lignification of the main stem; hence, elevated CO2 appeared to accelerate maturation as well as growth. Data from this long-term study suggest that certain mangrove growth characters will change flexibly as atmospheric CO2 increases, and accord with responses previously shown in Rhizophora apiculata. Such results must be integrated with data from sea-level rise studies to yield predictions of mangrove performance under changing climate.  相似文献   

11.
Summary Cells ofChara corallina grown under high CO2 culture conditions were able to utilize exogenous HCO3 to give appreciable rates of net photosynthesis. Since these rates of photosynthesis could be detected within 10 min of being transferred from high-CO2 to normal HCO3 (pH 8.2) culture conditions, it would appear that the HCO3 -accumulating system ofChara is not fully repressed under these high CO2 culture conditions. The membrane potential of these cells also responded to light/dark treatments in a manner consistent with the operation of a HCO3 acquisition system. With prolonged exposure (2–6 days) to CPW/B, net photosynthesis continued to increase towards the expected control rate and, in parallel, the electrical responses elicited by light/dark treatments converged towards those obtained on control (CPW/B-grown)Chara cells. Charasomes were absent in CPW/CO2-grownChara, but redeveloped in mature cells once the culture was returned to CPW/B conditions; a minimum period of 7 days in CPW/B was required before charasomes were detected in tissue examined in the transmission electron microscope. As the above-detailed physiological and electrophysiological features were observed with both axial and whorl cells ofChara in which charasomes were completely absent, we conclude that this specialized organelle is not an essential component for photosynthetic utilization of exogenous HCO3 in this species.Abbreviations CPW/B Chara pond water containing 1.0 mM NaHCO3, pH8.2 - CPW/CO2 Chara pond water containing dissolved CO2, pH 5.5 - DIC dissolved in organic carbon - D.H. dark-induced membrane hyperpolarization - L.H. light-induced membrane hyperpolarization - TEM transmission electron microscopy  相似文献   

12.
Physiological and morphological characteristics related to the CO2-concentrating mechanism (CCM) were examined in several species of the free-living, unicellular volvocalean genus Chloromonas (Chlorophyta), which differs morphologically from the genus Chlamydomonas only by lacking pyrenoids. The absence of pyrenoids in the chloroplasts of Chloromonas (Cr.) rosae UTEX 1337, Cr. serbinowii UTEX 492, Cr.␣clatharata UTEX 1970, Cr. rosae SAG 26.90, and Cr. palmelloides SAG 32.86 was confirmed by light and electron microscopy. In addition, immunogold electron microscopy demonstrated that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) molecules were distributed almost evenly throughout the chloroplasts in all five Chloromonas strains. However, Chloromonas exhibited two types of physiological characteristics related to the CCM depending on the species or strains examined. Chloromonas rosae UTEX 1337 and Cr. serbinowii had high photosynthetic affinities for CO2 in cells grown in culture medium bubbled with air (low-CO2 cells), compared with those grown in medium bubbled with 5% CO2 (high-CO2 cells), indicating the presence of the low-CO2-inducible CCM. In addition, these two Chloromonas strains exhibited low-CO2-inducible carbonic anhydrase (CA; EC 4.2.1.1) activity and seemed to have small intracellular inorganic carbon pools. Therefore, it appears that Cr. rosae UTEX 1337 and Cr. serbinowii possess the CCM as in pyrenoid-containing microalgae such as Chlamydomonas reinhardtii. By contrast, Cr. clatharata, Cr. rosae SAG 26.90 and Cr. palmelloides showed low photosynthetic affinities for CO2 when grown under both CO2 conditions. Moreover, these three strains exhibited an apparent absence of intracellular inorganic carbon pools and lacked low-CO2-inducible CA activity. Thus, Cr. clatharata, Cr. rosae SAG 26.90 and Cr. palmelloides, like other pyrenoid-less algae (lichen photobionts) reported previously, seem to lack the CCM. The present study is the first demonstration of the CCM in pyrenoid-less algae, indicating that pyrenoids or accumulation of Rubisco in the chloroplasts are not always essential for the CCM in algae. Focusing on this type of CCM in pyrenoid-less algae, the physiological and evolutionary significance of pyrenoid absence is discussed. Received: 1 May 1997 / Accepted: 11 September 1997  相似文献   

13.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

14.
Two green algal species, Chlamydomonas reinhardtii and Scenedesmus obliquus, exhibited a relative maximum during the decay of luminescence, when adapted to low CO2 conditions that was not observed in high CO2 adapted cells.From the kinetics of transient changes in the level of dark fluorescence, after illumination and parallel to the luminescence maxima, it was concluded that the maximum in Scenedesmus was mainly related to a decrease in nonphotochemical quenching, whereas in Chlamydomonas the maximum was mainly related to a dark reduction of the primary PS II acceptor QA.ATP/ADP ratios from low CO2 adapted Scenedesmus showed transient high levels after a dark/light transition that was not observed in high CO2 adapted cells. After 30 s of illumination the ATP/ADP ratios however stabilized at the same steady state level as in high CO2 adapted cells.Dark addition of HCO3 - to low CO2 adapted cells of Chlamydomonas resulted in a rapid transient quenching of luminescence that was not observed in low CO2 adapted cells of neither species.It is concluded that the luminescence maxima present in both low CO2 adapted Scenedesmus and Chlamydomonas reflect adaptation of the cells to low CO2 conditions. It is further suggested that the difference in mechanistic origin of luminescence maxima in the two species reflects differences in adaptation.Abbreviations ADP adenosine-diphosphate - ATP adenosine-triphosphate - Ci inorganic carbon - FD dark fluorescence recorded under dark adapted conditions - F0 fluorescence with all reaction centers open - FV variable fluorescence - PS I photosystem I - PS II photosystem II - QA the first quinone acceptor of PS II  相似文献   

15.
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 M CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.  相似文献   

16.
In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO4 2–, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed when cells grown in high CO2 (5% CO2 in air) were switched to low CO2, but only while the cultures were growing in light. Immunoblot analysis of total cell protein against pea chloroplastic carbonic anhydrase polyclonal antibodies showed immunoreactive 30-kDa bands in both high- and low-CO2-grown cells and an aditional 49-kDa band exclusively in low-CO2-grown cells. The 30-kDa protein was shown to be located in the chloroplast. Western blot analysis of the plasmamembrane fraction against corn plasma-membrane AT-Pase polyclonal antibodies showed 60-kDa bands in both high- and low-CO2 cell types as well as an immunoreactive 100-kDa band occurring only in low-CO2-grown cells. These results suggest that there are two distinct forms of both carbonic anhydrase and plasma-membrane ATPase, and that one form of each of them can be regulated by the CO2 concentration.Abbreviations CA carbonic anhydrase - DIC dissolved inorganic carbon (CO2+ HCO3 ) - CCM CO2-concentrating mechanism - low CO2 air containing 0.03% CO2 - high CO2 air supplemented with 5% CO2 (v/v) We thank Prof. John Coleman for providing antibodies raised against pea chloroplast CA, Dr. James V. Moroney for providing antibodies raised against the 37-kDa periplasmic carbonic anhydrase of CO2 Chlamydomonas reinhardtii, and Prof. Leonard T. Robert for a gift of corn plasma-membrane 100-kDa ATPase antibodies. We thank Dr. Jeanine Olsen (University of Groningen, the Netherlands) for style comments. This work was supported by the Institute Tecnológico de Canarias (Spain).  相似文献   

17.
18.
Unicellular algae grow well under limiting CO2 conditions, aided by a carbon concentrating mechanism (CCM). In C. reinhardtii, this mechanism is inducible and is present only in cells grown under low CO2 conditions. We constructed a cDNA library from cells adapting to low CO2, and screened the library for cDNAs specific to low CO2-adapting cells. Six classes of low CO2-inducible clones were identified. One class of clone, reported here, represents a novel gene associated with adaptation of cells to air. A second class of clones corresponds to the air-inducible periplasmic carbonic anhydrase I (CAH1). These clones represent genes that respond to the level of CO2 in the environment.  相似文献   

19.
Polypeptides of 21, 36 and 37 kDa are induced in the unicellular green alga Chlamydomonas reinhardtii Dang. when cells are transferred from high (2%) to low (0.03%) CO2 concentrations. The synthesis of these polypeptides is correlated with the induction of the CO2-concentrating mechanism. In this work we studied the effect of the growth conditions on the synthesis of these polypeptides with the aim of clarifying whether the induction of all three of these low-CO2-inducible polypeptides requires the same environmental factor. Our results showed that induction of the 21- and 36-kDa polypeptides under low-CO2 conditions occurred only in the light, while the 37-kDa periplasmic carbonic anhydrase (EC 4.2.1.1) was induced in light, darkness, and in both synchronous and asynchronous cultures. In addition, induction of these polypeptides appeared to be determined more by the O2/CO2 ratio than by the CO2 concentrations. None of these polypeptides could be induced in either of two different mutants of C. reinhardtii, one lacking ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and the other with inactive enzyme. Our results indicate that the 21- and 36-kDa polypeptides are regulated by a mechanism different from that controlling the 37-kDa polypeptide.Abbreviations pCA (periplasmic) carbonic anhydrase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - TAP Trisacetate phosphate medium The authors thank Prof. M. Spalding (Iowa State University, USA) for providing antisera to LIP-21 and LIP-36. We thank Prof. S. Bartlett and Dr. J. Moroney (Louisiana State University, USA) for providing antibodies to C. reinhardtii, Rubisco and 37-kDa pCA, respectively. This work was supported by the Instituto Tecnologico de Canarias.  相似文献   

20.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号