首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Facile derivatization of rhodamine 6G in the 2' position by direct reaction with secondary amines is reported. If the secondary amine contains a hydroxy group, the hydroxyl-functional intermediate can be readily esterified to give either fluorescent initiators for atom transfer radical polymerization (ATRP) or a fluorescent methacrylic comonomer. In contrast to rhodamine dyes functionalized using primary amines, which are only fluorescent at low pH, these compounds are highly fluorescent at physiological pH. These new compounds were subsequently used to prepare a range of fluorescently labeled biocompatible polymers based on the biomimetic monomer, 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), for biomedical studies.  相似文献   

2.
Hyaluronan (HA) based hydrogels have been synthesized combining chemical modification of the polysaccharide by partial oxidation, reductive amination and 'click chemistry'. HA was oxidized by 4-acetamido-TEMPO-mediated reaction, using sodium hypochlorite as primary oxidant and NaBr in buffered pH, so that the produced aldehyde moieties (hemiacetals) were trapped in situ by adding primary amines containing azide or alkyne-terminal groups. The structure of the reaction products, oxidized-HA and primary amines bonded to HA, was elucidated using 2D NMR spectroscopy. SEC-MALLS analysis of the modified substrates showed a negligible degradation of the polysaccharide using this procedure. Furthermore, azido- and alkynyl derivatives underwent cross-linking by click chemistry into hydrogels, which were characterized by NMR, FT-IR, swelling degree and mechanical properties. Possible application of the material as scaffold for tissue engineering was tested by seeding and proliferation of chondrocytes for up to 15 days.  相似文献   

3.
Tripeptidyl peptidase I (TPP-I) is a lysosomal peptidase with unclear physiological function. TPP-I deficiency is associated with late-infantile neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease of childhood that is characterized by loss of neurons and photoreceptor cells. We have developed two novel fluorogenic substrates, [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110, that are cleaved by TPP-I in living cells. Fluorescence of liberated rhodamine 110 was detected by flow cytometry and was dependent on the level of TPP-I expression. Rhodamine-related fluorescence could be suppressed by preincubation with a specific inhibitor of TPP-I. When investigated by fluorescent confocal microscopy, rhodamine signals colocalized with lysosomal markers. Thus, cleavage of these rhodamide-derived substrates is a marker for mature enzymatically active TPP-I. In addition, TPP-I-induced cleavage of [Ala-Ala-Phe]2-rhodamine 110 could be visualized in primary neurons. We conclude that [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110 are specific substrates for determining TPP-I activity and intracellular localization in living cells. Further, these substrates could be a valuable tool for studying the neuronal pathology underlying classical late-infantile NCL. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.  相似文献   

4.
Diamines covalently coupled to glass substrates promoted human foreskin fibroblast adhesion in the absence of serum. These diamine-derivatized substrates were produced by coupling ethylene diamine, N-methylaminoethylamine, and N,N-dimethylaminoethylamine (NNDMAEA), to sulfonyl chloride-activated glass. Electron spectroscopy for chemical analysis demonstrated that the diamines were coupled via their primary amine ends to produce a surface-bound secondary amine linked to a free amino moiety via a two-carbon spacer. NNDMAEA-modified substrates containing free tertiary amines supported the highest degree of cell spreading (73 +/- 7% actively spreading cells) and the most extensive cytoskeletal organization. Both the free tertiary and surface-bound secondary amines were shown to be required for cell spreading. Lysine- and arginine-grafted substrates supported cell spreading and cytoskeletal organization similar to that on NNDMAEA-modified substrates. Although some stress fibers were observed within spread cells on these substrates, focal contacts did not form. Heparinase treatment did not inhibit cell attachment or spreading to the diamine-derivatized substrates, however chondroitinase ABC inhibited cell attachment and spreading on all substrates; heparinase inhibited spreading on lysine- and arginine-derivatized substrates to a lesser extent. These results imply that cell attachment to these substrates was mediated primarily by cell surface chondroitin sulfate proteoglycans. This study demonstrates that covalently grafted NNDMAEA, lysine, and arginine can mimic the adhesion-promoting activity of the glycosaminoglycan-binding domains of cell adhesion proteins. This study also demonstrates that the interaction with these proteoglycans depends in a very sensitive manner on the particular structure of the immobilized amine.  相似文献   

5.
Pyroglutamic acid esters, both (S)- and (R)-enantiomers, have been studied as substrates of the Candida antarctica lipase B catalyzed amidation in anhydrous organic solvents. They behaved as very good substrates when primary amines or ammonia were used as nucleophiles, affording the corresponding secondary and primary amides, respectively, but did not react with secondary amines. The reaction was enantioselective for the (R)-enantiomer of chiral amines although little kinetic difference was observed between (S)- and (R)-pyroglutamates as acyl donors. As an example of an infrequent reaction, free (S)-pyroglutamic acid may also act as a substrate of the reaction, but is much less reactive than its esters.  相似文献   

6.
J P Coleman  J J Perry 《Microbios》1984,39(155):49-63
Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.  相似文献   

7.
The substrate specificity of spermidine dehydrogenase from Serratia marcescens was studied using many kinds of naturally occurring and synthetic polyamines. Diamines inhibited the enzyme competitively and their inhibitor constants tended to decrease with increasing methylene chain length in the diamines. All of the triamines and tetramines examined were active as substrates, and the amines containing a 4-aminobutylimino moiety (NH2(CH2)4NH-) in their structures were more active. N-Alkylputrescine was also oxidized by the enzyme. All of the amines containing a 4-aminobutylimino group were oxidized to form 1-pyrroline stoichiometrically as one of the products. Tetramines containing a 3-aminopropylimino group (NH2(CH2)3NH-) were oxidized to form 1,3-diaminopropane. However, in the case of an amine containing both 4-aminobutylimino and 3-aminopropylimino groups, the imino moiety of the former was preferentially oxidized by the enzyme. On the basis of the substrate specificity, the binding characteristics of the enzyme are discussed and a subsite model for the binding site is proposed.  相似文献   

8.
A library of 132 racemic chiral amines (α-substituted methylbenzylamines, benzhydrylamines, 1,2,3,4-tetrahydronaphthylamines (THNs), indanylamines, allylic and homoallylic amines, propargyl amines) was screened against the most versatile monoamine oxidase (MAO-N) variants D5, D9 and D11. MAO-N D9 exhibited the highest activity for most substrates and was applied to the deracemisation of a comprehensive set of selected primary amines. In all cases, excellent enantioselectivity was achieved (e.e. >99%) with moderate to good yields (55–80%). Conditions for the deracemisation of primary amines using a MAO-N/borane system were further optimised using THN as a template addressing substrate load, nature of the enzyme preparation, buffer systems, borane sources, and organic co-solvents.  相似文献   

9.
The P-glycoprotein efflux system located on the apical membrane of brain capillary endothelial cells functions as part of the blood-brain barrier. In this study, primary cultures of bovine brain microvessel endothelial cells (BMECs) were investigated for the presence of a P-glycoprotein system and its contribution in regulating ivermectin distribution across the blood-brain barrier. Results of rhodamine 123 uptake studies with cyclosporin A and verapamil as substrates indicated that a functional efflux system was present on BMECs. Immunoblot analysis with the C219 monoclonal antibody to the product of the multidrug resistant member 1(MDR1) gene also confirmed the expression of MDR1 in the BMECs. Unbound ivermectin was shown to significantly increase the uptake of rhodamine 123 in BMECs, however, the drug only modestly enhanced the transcellular passage of rhodamine. The results of these studies affirmed that unbound ivermectin is an inhibitor of the MDR1 efflux system in BMECs.  相似文献   

10.
Pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenases (PQQ-ADH) require ammonia or primary amines as activators in in vitro assays with artificial electron acceptors. We found that PQQ-ADH from Pseudomonas putida KT2440 (PpADH) was activated by various primary amines, di-methylamine, and tri-methylamine. The alcohol oxidation activity of PpADH was strongly enhanced and the affinity for substrates was also improved by pentylamine as an activator.  相似文献   

11.
The contributions of the authors to the research program 'Radicals in Enzymatic Catalysis' over the last ca. 5 years are summarized. Significant efforts were directed towards the design and testing of phenol-containing ligands for synthesizing radical-containing transition metal complexes as potential candidates for catalysis of organic substrates like alcohols, amines, aminophenols and catechols. Functional models for different copper oxidases, such as galactose oxidase, amine oxidases, phenoxazinone synthase and catechol oxidase, are reported. The copper complexes synthesized can mimic the function of the metalloenzymes galactose oxidase and amine oxidases by catalyzing the aerial oxidation of alcohols and amines. Even methanol could be oxidized, albeit with a low conversion, by a biradical-copper(II) compound. The presence of a primary kinetic isotope effect, similar to that for galactose oxidase, provides compelling evidence that H-atom abstraction from the alpha-C-atom of the substrates is the rate-limiting step. Although catechol oxidase and phenoxazinone synthase contain copper, manganese(IV) complexes containing radicals have been found to be useful to study synthetic systems and to understand the naturally occurring processes. An 'on-off' mechanism of the radicals without redox participation from the metal centers seems to be operative in the catalysis involving such metal-radical complexes.  相似文献   

12.
The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane production. Sulfate reduction was stimulated simultaneously with methanogenesis by the various quaternary amines and all other substrates examined. Incubation of exogenous trimethylamine, choline, or glycine betaine with either bromoethane sulfonic acid or sodium molybdate was used to establish pathways of degradation of the substrates. Methanogenesis dominated the metabolism of trimethylamine, although limited nonmethanogenic activity, perhaps by sulfate-reducing bacteria, was observed. Acetate was oxidized primarily by sulfate reducers. Both choline and glycine betaine were fermented stoichiometrically to acetate and trimethylamine; apparently, neither substrate could be utilized directly by methanogens or sulfate reducers, and the activities of fermenters, methanogens, and sulfate reducers were all required to effect complete mineralization. These observations support the hypothesis that the presence of quaternary amines can mediate the coexistence of sulfate reduction and methanogenesis in marine surface sediments; they also implicate methanogens in the nitrogen cycle of marine sediments containing quaternary amines.  相似文献   

13.
Transglutaminase enzyme activity was demonstrated in murine splenic B lymphocytes. Preincubation of cell cultures with primary amines that are known substrates for transglutaminase inhibited the triggering of murine B lymphocytes to form clones of antibody-producing plasma cells. B cells could be rescued from this inhibition by incubating cultures with anti-immunoglobulin or multivalent antigens under nonstimulatory conditions. Rescue of B cells exhibited the same requirements as stimulation, which suggests that rescue is a dynamic process and not simply a receptor-ligand binding event. Primary amines appeared to inhibit an early, T cell-independent event in the B cell activation pathway, which was not sufficient to trigger B cells to form antibody-producing clones. Subsequent receptor-mediated events, required to further trigger B cells, were not inhibited by the presence of primary amines.  相似文献   

14.
The human multidrug resistance P-glycoprotein (P-gp) pumps a wide variety of structurally diverse compounds out of the cell. It is an ATP-binding cassette transporter with two nucleotide-binding domains and two transmembrane (TM) domains. One class of compounds transported by P-gp is the rhodamine dyes. A P-gp deletion mutant (residues 1-379 plus 681-1025) with only the TM domains retained the ability to bind rhodamine. Therefore, to identify the residues involved in rhodamine binding, 252 mutants containing a cysteine in the predicted TM segments were generated and reacted with a thiol-reactive analog of rhodamine, methanethiosulfonate (MTS)-rhodamine. The activities of 28 mutants (in TMs 2-12) were inhibited by at least 50% after reaction with MTS-rhodamine. The activities of five mutants, I340C(TM6), A841C(TM9), L975C(TM12), V981C(TM12), and V982C(TM12), however, were significantly protected from inhibition by MTS-rhodamine by pretreatment with rhodamine B, indicating that residues in TMs 6, 9, and 12 contribute to the binding of rhodamine dyes. These results, together with those from previous labeling studies with other thiol-reactive compounds, dibromobimane, MTS-verapamil, and MTS-cross-linker substrates, indicate that common residues are involved in the binding of structurally different drug substrates and that P-gp has a common drug-binding site. The results support the "substrate-induced fit" hypothesis for drug binding.  相似文献   

15.
Components within synthetic chemical and natural product extract libraries often interfere with fluorescence-based assays. Fluorescence interference can result when the intrinsic spectral properties of colored compounds overlap with the fluorescent probes. Typically, fluorescence-based protease assays use peptide amidomethylcoumarin derivatives as substrates. However, because many organic compounds absorb in the ultraviolet region, they can interfere with coumarin-based fluorescence assays. Red-shifted fluorescent dyes such as peptidyl rhodamine derivatives are useful because there is generally less interference from organic compounds outside the ultraviolet wavelengths. In this report, rhodamine-based fluorogenic substrates, such as bis-(Leu)(2)-Rhod110 and bis-(Ala-Pro)-Rhod110, were developed for leucine aminopeptidase and dipeptidyl aminopeptidase. Novel, tandem rhodamine substrates such as Ala-Pro-Rhod110-Leu were designed with 2 protease cleavage sites and used to assay 2 proteases in a multiplex format. General endpoint high-throughput screening (HTS) assays were also developed for leucine aminopeptidase, dipeptidyl aminopeptidase, and trypsin that incorporated both amidomethylcoumarin and rhodamine-based fluorogenic substrates into a single screening format. These dual-substrate assays allowed for the successful screening of the LOPAC trade mark collection and natural product extracts despite high levels of fluorescence interference.  相似文献   

16.
Tissue transglutaminase (TG2) can modify proteins by transamidation or deamidation of specific glutamine residues. TG2 has a major role in the pathogenesis of celiac disease as it is both the target of disease-specific autoantibodies and generates deamidated gliadin peptides that are recognized by CD4(+), DQ2-restricted T cells from the celiac lesions. Capillary electrophoresis with fluorescence-labeled gliadin peptides was used to separate and quantify deamidated and transamidated products. In a competition assay, the affinity of TG2 to a set of overlapping gamma-gliadin peptides was measured and compared with their recognition by celiac lesion T cells. Peptides differed considerably in their competition efficiency. Those peptides recognized by intestinal T cell lines showed marked competition indicating them as excellent substrates for TG2. The enzyme fine specificity of TG2 was characterized by synthetic peptide libraries and mass spectrometry. Residues in positions -1, +1, +2, and +3 relative to the targeted glutamine residue influenced the enzyme activity, and proline in position +2 had a particularly positive effect. The characterized sequence specificity of TG2 explained the variation between peptides as TG2 substrates indicating that the enzyme is involved in the selection of gluten T cell epitopes. The enzyme is mainly localized extracellularly in the small intestine where primary amines as substrates for the competing transamidation reaction are present. The deamidation could possibly take place in this compartment as an excess of primary amines did not completely inhibit deamidation of gluten peptides at pH 7.3. However, lowering of the pH decreased the reaction rate of the TG2-catalyzed transamidation, whereas the rate of the deamidation reaction was considerably increased. This suggests that the deamidation of gluten peptides by TG2 more likely takes place in slightly acidic environments.  相似文献   

17.
Destruction of a number of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gradually transforming into benzoate. It was shown that isolated microbial communities are capable of converting the initial substrates--benzyl alcohol, benzoate, salicylic acid, and golden yellow azo dye--into biogas without a lag-phase but with different velocities. Aromatic and linear intermediates of biodestruction of aromatic amines by obtained enrichment cultures were determined for the first time. Selective effect of aromatic substrates on a microbial community that was expressed in decrease in diversity and gradual change of dominant morphotypes was revealed.  相似文献   

18.
Reactions of nucleophilic substitution and enzymatic processes involving metalloporphirins (MP) are considered in terms of coordination of zinc(II)tetraphenylporphine (Zn-TPhP) with corresponding ligands/nucleophiles/substrates/bases. Linear correlations are performed between kinetic parameters of the Zn-TPhP coordination processes in chloroform (stability constants) and reactions of nucleophilic substitution both in aqueous and organic solvents involving pyridines, pyridine N-oxides, anilines, primary amines, as well as in reactions of oxidation of anilines with horseradish peroxidase in aqueous media (rate constants). Thermodynamic parameters of the complex formation and nucleophilic substitution linearly correlate with each other in the case of pyridines, anilines, and primary amines.  相似文献   

19.
The dipeptidyl rhodamine diamide substrates (Z-Phe-Arg)2-R110 and (Z-Arg-Arg)2-R110 are 820- and 360-fold more selective for cathepsin L than for cathepsin B allowing a sensitive determination of cathepsin L activity in the presence of high activity of cathepsin B. The results obtained with cell lysates suggest that the cysteine proteinase activity of vital macrophages detected by flow cytometry with these substrates is mainly due to cathepsin L.  相似文献   

20.
Dhawan S 《Peptides》2002,23(12):1239-2098
Immunoconjugates are widely used for indirect detection of analytes (such as antibodies or antigens) in a variety of immunoassays. However, the availability of functional groups such as primary amines or free sulfhydryls in an immunoglobulin molecule is the limiting factor for optimal conjugation and, therefore, determines the sensitivity of an assay. In the present study, an N-terminal bromoacetylated 20 amino acid peptide containing 20 lysine residues was conjugated to N-succinimidyl-S-acetylthioacetate (SATA)-modified IgG or free sulfhydryl groups on 2-mercaptoethylamine (2-MEA)-reduced IgG molecules via a thioether (S---CH2CONH) linkage to introduce multiple reactive primary amines per IgG. These primary amines were then covalently coupled with maleimide-activated horseradish peroxidase (HRP). The poly-HRP–antibody conjugates thus generated demonstrated greater than 15-fold signal amplification upon reaction with orthophenyldiamine substrate. The poly-HRP–antibody conjugates efficiently detected human immunodeficiency virus (HIV)-1 antibodies in plasma specimens with significantly higher sensitivity than conventionally prepared HRP–antibody conjugates in an HIV-1 solid-phase enzyme immunoassay and Western blot analysis. The signal amplification techniques reported here could have the potential for development of highly sensitive immunodiagnostic assay systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号