首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used quantitative DNase I footprinting to measure the relative affinities of four disubstituted and two monosubstituted amidoanthraquinone compounds for intermolecular DNA triplexes, and have examined how the position of the attached base-functionalized substituents affects their ability to stabilize DNA triplexes. All four isomeric disubstituted derivatives examined stabilize DNA triplexes at micromolar or lower concentrations. Of the compounds studied the 2,7-disubstituted amidoanthraquinone displayed the greatest triplex affinity. The order of triplex affinity for the other disubstituted ligands decreases in the order 2,7 > 1,8 = 1,5 > 2,6, with the equivalent monosubstituted compounds being at least an order of magnitude less efficient. The 1,5-disubstituted derivative also shows some interaction with duplex DNA. These results have been confirmed by molecular modelling studies, which provide a rational basis for the structure-activity relationships. These suggest that, although all of the compounds bind through an intercalative mode, the 2,6, 2,7 and 1,5 disubstituted isomers bind with their two side groups occupying adjacent triplex grooves, in contrast with the 1,8 isomer which is positioned with both side groups in the same triplex groove.  相似文献   

2.
In our previous work we have shown that the oligonucleotide 5'-GGGGAGGGGGAGG-3' gives a very stable and specific triplex with the promoter of the murine c-pim-1 proto-oncogene in vitro[Svinarchuk, F., Bertrand, J.-R. and Malvy, C.(1994)Nucleic Acids Res., 22, 3742-3747]. In the present work, we have tested triplex formation with some derivatives of this oligonucleotide which are designed to be degradation-resistant inside the cells, and we show that phosphorothioate and the oligonucleotide with a 3' terminal amino group are still able to form triplexes. Moreover these oligonucleotides, like the 13mer oligonucleotide of similar composition [Svinarchuk, F., Paoletti, J., and Malvy, C. (1995) J. Biol. Chem., 270, 14068-14071], are able to stabilize the targeted duplex. In vivo DMS footprint analysis after electroporation of the pre-formed triplex into the cell have shown the presence of the triple helix inside the cells. This triplex structure partially blocks c-pim-1 promotor activity as shown by transient assay with a c-pim-1 promoter-luciferase gene construct. To our knowledge these data are the first direct evidence that conditions inside cells are favorable for triplex stability with non-modified oligonucleotides. However we were unable to show triplex formation inside living cells using various methods of oligonucleotide delivery. We suppose that this may be due to the oligonucleotide being sequestered by cellular processes or proteins. Further work is needed to find oligonucleotide derivatives and ways of their delivery to overcome the problem of triplex formation inside the cells.  相似文献   

3.
Purine-rich (GA)- and (GT)-containing oligophosphorothioates were investigated for their triplex-forming potential on a 23 bp DNA duplex target. In our system, GA-containing oligophosphorothioates (23mer GA-PS) were capable of triplex formation with binding affinities lower than (GA)-containing oligophosphodiesters (23mer GA-PO). The orientation of the third strand 23mers GA-PS and GA-PO was antiparallel to the purine strand of the duplex DNA target. In contrast, (GT)-containing oligophosphorothioates (23mer GT-PS) did not support triplex formation in either orientation, whereas the 23mer GT-PO oligophosphodiester demonstrated triplex formation in the antiparallel orientation. GA-PS oligonucleotides, in contrast to GT-PS oligonucleotides, were capable of self-association, but these self-associated structures exhibited lower stabilities than those formed with GA-PO oligonucleotides, suggesting that homoduplex formation (previously described for the 23mer GA-PO sequence by Noonberg et al.) could not fully account for the decrease in triplex stability when phosphorothioate linkages were used. The 23mer GA-PS oligonucleotide was covalently linked via its 5'-end to an acridine derivative (23mer Acr-GA-PS). In the presence of potassium cations, this conjugate demonstrated triplex formation with higher binding affinity than the unmodified 23mer GA-PS oligonucleotide and even than the 23mer GA-PO oligonucleotide. A (GA)-containing oligophosphodiester with two phosphorothioate linkages at both the 5'- and 3'-ends exhibited similar binding affinity to duplex DNA compared with the unmodified GA-PO oligophosphodiester. This capped oligonucleotide was more resistant to nucleases than the GA-PO oligomer and thus represents a good alternative for ex vivo applications of (GA)-containing, triplex-forming oligonucleotides, allowing a higher binding affinity for its duplex target without rapid cellular degradation.  相似文献   

4.
A delta-carboline derivative was covalently coupled to a 7 mer oligonucleotide at its 5'- or 3'-end. The stability of triplexes formed from the conjugates and a double-helical target was studied by UV melting experiments. Compared to the unmodified control triple helices, triplexes with the conjugate exhibit a significantly higher stability. However, the degree of stabilization depends on the particular triplex structure formed.  相似文献   

5.
We have used DNase I footprinting to compare the stability of parallel triple helices containing different numbers of T.AT and C+. GC triplets. We have targeted a fragment containing the 17mer sequence 5'-AGGAAGAGAAAAAAGAA with the 9mer oligonucleotides 5'-TCCTTCTCT, 5'-TTCTCTTTT and 5'-TTTTTTCTT, which form triplexes at the 5'-end, centre and 3'-end of the target site respectively. Quantitative DNase I footprinting has shown that at pH 5.0 the dissociation constants of these oligonucleotides are 0.13, 4.7 and >30 microM respectively, revealing that increasing the proportion of C+.GC triplets increases triplex stability. The results suggest that the positive charge on the protonated cytosine contributes to triplex stability, either by a favourable interaction with the stacked pisystem or by screening the charge on the phosphate groups. In the presence of a naphthylquinoline triplex binding ligand all three oligonucleotides bind with similar affinities. At pH 6.0 these triplexes only form in the presence of the triplex binding ligand, while at pH 7.5 footprints are only seen with the oligonucleotide which generates the fewest number of C+.GC triplets (TTTTTTCTT) in the presence of the ligand.  相似文献   

6.
We have used quantitative DNase I footprinting and UV-melting studies to examine the formation of DNA triplexes in which the third strand thymines have been replaced by 5-propargylamino-dU (UP). The intra-molecular triplex A6-L-T6-L-(UP)5T (L = two octanediol residues) shows a single UV-melting transition which is >20 degrees higher than that of the parent triplex A6-L-T6-L-T6at pH 5.5. Although a single transition is observed at all pHs, the melting temperature (Tm) of the modified oligonucleotide decreases at higher pHs, consistent with the requirement for protonation of the amino group. A similar intramolecular triplex with a longer overhanging duplex shows two melting transitions, the lower of which is stabilised by substitution of T by UP, in a pH dependent fashion. Triplex stability increases by approximately 12 K for each T to UP substitution. Quantitative footprinting studies have examined the interaction of three UP-containing 9mer oligonucleotides with the different portions of the 17mer sequence 5'-AGGAAGAGAAAAAAGAA. At pH 5.0, the UP-containing oligo-nucleotides footprint to much lower concentrations than their T-containing counterparts. In particular (UP)6CUPT binds approximately 1000-fold more tightly than the unmodified oligonucleotide T6CTT. Oligonucleotides containing fewer UP residues are stabilised to a lesser extent. The affinity of these modified third strands decreases at higher pHs. These results demonstrate that the stability of DNA triplexes can be dramatically increased by using positively charged analogues of thymine.  相似文献   

7.
A Debin  C Malvy    F Svinarchuk 《Nucleic acids research》1997,25(10):1965-1974
In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.  相似文献   

8.
Triple helix formation requires a polypurine- polypyrimidine sequence in the target DNA. Recent works have shown that this constraint can be circumvented by using alternate strand triplex-forming oligonucleotides. We have previously demonstrated that (T,G)-containing triplex- forming oligonucleotides may adopt a parallel or an antiparallel orientation with respect to an oligopurine target, depending upon the sequence and, in particular, upon the number of 5'-GpT-3' and 5'-TpG-3' steps [Sun et al. (1991) C.R. Acad. Sci. Paris Ser III, 313, 585-590]. A single (T,G)-containing oligonucleotide can therefore interact with two oligopurine stretches which alternate on the two strands of the target DNA. The (T,G) switch oligonucleotide contains a 5'-part targeted to one of the oligopurine sequences in a parallel orientation followed by a 3'-part that adopts an antiparallel orientation with respect to the second oligopurine sequence. We show that a limitation to the stability of such a triplex may arise from the instability of the antiparallel part, composed of reverse-Hoogsteen C.GxG and T.AxT base triplets. Using DNase I footprinting and ultraviolet absorption experiments, we report that a benzo[e]pyridoindole derivative [(3-methoxy- 7H-8-methyl-11-[(3'-amino-propyl) amino] benzo[e]pyrido [4,3-b]indole (BePI)], a drug interacting more tightly with a triplex than with a duplex DNA, strongly stabilizes triplexes with reverse-Hoogsteen C.GxG and T.AxT triplets thus allowing a stabilization of the triplex-forming switch (T,G) oligonucleotide on alternating oligopurine- oligopyrimidine 5'-(Pu)14(Py)14-3' duplex sequences. These results lead to an extension of the range of oligonucleotide sequences for alternate strand recognition of duplex DNA.  相似文献   

9.
Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen bonded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel triplex, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41--O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees , helical twist of the average structure from this simulation had a value of 36 degrees , while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel triplex, it was energetically comparable to the parallel triplex. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel triplex by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically. Together these results indicate that the parallel C.G*G triplex with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.  相似文献   

10.
G,A-containing purine oligonucleotides of various lengths form extremely stable and specific triplexes with the purine-pyrimidine stretch of the vpx gene [Svinarchuk,F., Monnot,M., Merle,A., Malvy,C. and Fermandjian,S. (1995) Nucleic Acids Res., 22, 3742--3747]. The potential application of triple-helix-forming oligonucleotides (TFO) in gene-targeted therapy has prompted us to study triplex formation mimicking potassium concentrations and temperatures in cells. Triplex formation was tested by dimethyl sulphate (DMS) footprinting, gel-retardation, UV melting studies and electron microscopy. In the presence of 10 mM MgCl2, KCl concentrations up to 150 mM significantly lowered both efficiency (triplex : initial duplex) and rate constants of triplex formation. The KCl effect was more pronounced for 11mer and 20mer TFOs than for 14mer TFO. Since the dissociation half-life for the 11mer TFO decreases from 420 min in the absence of monovalent cations to 40 min in the presence of 150 mM KCI, we suggest that the negative effect could be explained by a decrease in triplex stability. In contrast, for the 20mer TFO no dissociation of the triplex was observed during 24 h of incubation either in the absence of monovalent cations or in the presence of 150 mM KCl. We suppose that in the case of the 20mer TFO the negative effect of KCI on triplex formation is probably due to the self-association of the oligonucleotide in competitive structures such as parallel duplexes and/or tetraplexes. This negative effect may be overcome by the prior formation of a short duplex either on the 3'- or 5'-end of the 20mer TFO. We refer to these partial duplexes as 'zipper' TFOs. It was demonstrated that a 'zipper' TFO can form a triplex over the full length of the target, thus unzipping the short complementary strand. The minimal single-stranded part of the 'zipper' oligonucleotide which is sufficient to initiate triplex formation can be as short as three nucleotides at the 3'-end and six nucleotides at the 5'-end. We suggest that this type of structure may prove useful for in vivo applications.  相似文献   

11.
Gold nanoparticle labels, combined with UV-visible optical absorption spectroscopic methods, are employed to probe the temperature-dependent solution properties of DNA triple helices. By using oligonucleotide–nanoparticle conjugates to characterize triplex denaturation, for the first time triplex to duplex melting transitions may be sensitively monitored, with minimal signal interference from duplex to single strand melting, for both parallel and antiparallel triple helices. Further, the comparative sequence-dependent stability of DNA triple helices may also be examined using this approach. Specifically, triplex to duplex melting transitions for triplexes formed using oligonucleotides that incorporate 8-aminoguanine derivatives were successfully monitored and stabilization of both parallel and antiparallel triplexes following 8-aminoguanine substitutions is demonstrated.  相似文献   

12.
Gold nanoparticle labels, combined with UV-visible optical absorption spectroscopic methods, are employed to probe the temperature-dependent solution properties of DNA triple helices. By using oligonucleotide-nanoparticle conjugates to characterize triplex denaturation, for the first time triplex to duplex melting transitions may be sensitively monitored, with minimal signal interference from duplex to single strand melting, for both parallel and antiparallel triple helices. Further, the comparative sequence-dependent stability of DNA triple helices may also be examined using this approach. Specifically, triplex to duplex melting transitions for triplexes formed using oligonucleotides that incorporate 8-aminoguanine derivatives were successfully monitored and stabilization of both parallel and antiparallel triplexes following 8-aminoguanine substitutions is demonstrated.  相似文献   

13.
Fox KR  Flashman E  Gowers D 《Biochemistry》2000,39(22):6714-6725
We have used DNase I footprinting to examine the binding of five different 17-mer oligonucleotides to a 53-base oligopurine tract containing four pyrimidine interruptions. Although all the expected triplexes formed with high affinity (K(d) approximately 10-50 nM), one oligonucleotide produced a footprint at a second site with about 20-fold lower affinity. We have explored the nature of this secondary binding site and suggest that it arises when each end of the third strand forms a 7-mer triplex with adjacent regions on the duplex, generating a contiguous 14-base triplex with a bulge in the center of the third strand oligonucleotide. This unusual binding mode was examined by use of oligonucleotides that were designed with the potential to form different length third-strand loops of various base composition. We find that triplexes containing single-base bulges are generally more stable than those with dinucleotide loops, though triplexes can be formed with loops of up to nine thymines, generating complexes with submicromolar dissociation constants. These structures are much more stable than those formed by adding two separate 7-mer oligonucleotides, which do not generate DNase I footprints, though a stable complex is generated when the two halves are covalently joined by a hexa(ethylene glycol) linker. MPE produces less clear footprints, presumably because this cleavage agent binds to triplex DNA, but confirms that the oligonucleotides can bind in unexpected places. These results suggest that extra care needs to be taken when designing long triplex-forming oligonucleotides so as to avoid triplex formation at shorter secondary sites.  相似文献   

14.
We have used DNase I footprinting to examine the effect of a novel naphthylquinoline dimer, designed as a triplex-specific bis-intercalator, on the stability of intermolecular DNA triplexes. We find that this compound efficiently promotes triplex formation between the 9-mer oligonucleotide 5'-TTTTTTCTT and its oligopurine duplex target at concentrations as low as 0.1 microM, enhancing the triplex stability by at least 1000-fold. This compound, which is the first reported example of a triplex bis-intercalator, is about 30 times more potent than the simple monofunctional ligand.  相似文献   

15.
Competition between triplex formation with double-stranded DNA and oligonucleotide self-association was investigated in 23mer GA and GT oligonucleotides containing d(GA)5 or d(GT)5 repeats. Whereas triplex formation with GT oligonucleotides was diminished when temperature increased from 4 to 37 degrees C, triplex formation with GA oligonucleotides was enhanced when temperature increased within the same range due to the presence of competing intermolecular GA oligonucleotide self-structure. This self-structure was determined to be a homoduplex stabilized by the internal GA repeats. UV spectroscopy of these homoduplexes demonstrated a single sharp transition with rapid kinetics (Tm = 38.5-43.5 degrees C over strand concentrations of 0.5-4 microM, respectively, with transition enthalpy, delta H = -89 +/- 7 kcal/mol) in 10 mM MgCl2, 100 mM NaCl, pH 7.0. Homoduplex formation was strongly stabilized by multivalent cations (spermine > Mg2+ = Ca2+) and destabilized by low concentrations of monovalent cations (K+ = Li+ = Na+) in the presence of divalent cations. However, unlike GA or GT oligonucleotide-containing triplexes, the homoduplex formed even in the absence of multivalent cations, stabilized by only moderate concentrations of monovalent cations (Li+ > Na+ > K+). Through the development of multiple equilibrium states and the resulting depletion of free oligonucleotide, it was found that the presence of competing self-structure could decrease triplex formation under a variety of experimental conditions.  相似文献   

16.
In this paper, we describe the synthesis of the 3'-3'-linked TFOs that can form the antiparallel triplexes with the duplex DNA target by reverse Hoogsteen hydrogen bonds. Stability of the alternate-strand triplexes between these TFOs and the target DNAs was investigated using the electrophoretic mobility shift assay (EMSA). It was found that the alternate-strand triplexes were significantly stabilized by linking the TFO fragments with the pentaerythritol linker. And, unlike the alternate-strand triplexes composed of the pyrimidine motif, the terminal ammonium ion of the aminobutyl-linker and the intercalator of the TFOs did not contribute to the stability of the alternate-strand triplex comprised of the purine motif. We also tested the ability of the 3'-3'-linked TFOs to inhibit cleavage of the duplex DNA target 17 by the restriction enzyme EcoT14I and found that the 3'-3'-linked TFOs 12 and 13 inhibited the cleavage by the enzyme more effectively than the unlinked decamer 8. Thus, the TFOs linked with pentaerythritol may be useful as the antigene oligonucleotide to the DNA targets, which have alternating oligopyrimidine-oligopurine sequences.  相似文献   

17.
A novel bicyclic mimic of protonated cytosine [1,8-naphthyridin-2,7-(1,8H)-dione, (K)] for Hoogsteen type triplex recognition of guanine has been designed for incorporation into peptide nucleic acids. Bis-PNA clamps with the K base incorporated in the Hoogsteen strand showed a significant stabilization of the triplexes at pH 7 as compared to similar triplexes with PNA oligomers containing either cytosine (6.7 degrees C per unit) or pseudoisocytosine (1.5 degrees C per unit). Cooperative stabilization was observed when the K units were placed in adjacent positions ( approximately 3 degrees C per unit).  相似文献   

18.
Nuclease-resistant alpha anomers of pyrimidine-rich CT- and purine-rich GA- and GT-containing oligonucleotides were investigated for their triplex-forming potential and compared with their corresponding nuclease-sensitive beta anomers. Both 23mer CT-alpha and 23mer CT-beta had quite similar triplex binding affinities. Synthetic 23mer GT-alpha oligonucleotides were capable of triplex formation with binding affinities slightly lower than corresponding 23mer GT-beta oligonucleotides. The orientation of third strand GT-alpha binding was parallel to the purine strand of the duplex DNA target, whereas the orientation of third strand GT-beta binding was found to be antiparallel. Triplex formation with both GT oligonucleotides showed the typical dependence on magnesium and temperature. In contrast, 23mer GA-alpha oligonucleotides did not support triplex formation in either orientation under a variety of experimental conditions, whereas the corresponding 23mer GA-beta oligonucleotides demonstrated strong triplex formation in the antiparallel orientation. GA-alpha oligonucleotides covalently conjugated to acridine were similarly unable to demonstrate triplex formation. GA-alpha oligonucleotides, in contrast to GT-alpha oligonucleotides, were capable of self-association, detectable by gel retardation and UV spectroscopy, but competing self-association could not fully account for the lack of triplex formation. Thus for in vivo triplex gene regulation strategies using GT oligonucleotides the non-natural alpha anomer may be a feasible alternative to the natural beta anomer, allowing for a comparable degree of triplex formation without rapid cellular degradation. However, alpha anomeric inversion does not appear to be a feasible alternative in applications involving GA oligonucleotides.  相似文献   

19.
Triple helices with G*G.C and A*A.T base triplets with third GA strands either parallel or antiparallel with respect to the homologous duplex strand have been formed in presence of Na (+) or Mg(2+) counterions. Antiparallel triplexes are more stable and can be obtained even in presence of only monovalent Na(+) counterions. A biphasic melting has been observed, reflecting third strand separation around 20 degrees C followed by the duplex -> coil transition around 63 degrees C. Parallel triplexes are far less stable than the antiparallel ones. Their formation requires divalent ions and is observed at low temperature and in high concentration conditions. Different FTIR signatures of G*G.C triplets in parallel and antiparallel triple helices with GA rich third strands have been obtained allowing the identification of such base triplets in triplexes formed by nucleic acids with heterogeneous compositions. Only S-type sugars are found in the antiparallel triplex while some N-type sugar conformation is detected in the parallel triplex.  相似文献   

20.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号