首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue-specific or regulated expression of transgenes is desirable in order to prevent pleiotropic side effects of putatively harmful transgene products as well as loss of energy resources due to unnecessary accumulation of transgene products. Epidermis-specific expression would be useful for many defense-related genes directed against attack by fungal pathogens that enter the plant body by direct penetration through the epidermis. In an approach to enhance resistance of wheat to the powdery mildew fungus Blumeria graminis f.sp. tritici, a novel epidermis-specific promoter was developed and used for expression of two defense-related genes. A 2.3 kb fragment of the wheat GstA1 promoter in combination with an intron-containing part of the wheat WIR1a gene was found to drive strong and constitutive transient expression in wheat epidermis. This promoter-intron combination was used for overexpression of oxalate oxidase 9f-2.8 and TaPERO peroxidase, two defense-related wheat genes expressed in inner leaf tissues. Expression studies of several transgenic lines by in situ oxalate-oxidase staining, RNA and protein blot analyses, as well as real-time PCR, demonstrated strong and constitutive transgene expression in the shoot epidermis. Transient as well as stable over-expression of the TaPERO peroxidase gene in wheat epidermis under the control of the GstA1i promoter resulted in enhanced resistance against Blumeria graminis f.sp. tritici, whereas oxalate-oxidase overexpression had no effect in either system. The data suggest that the wheat GstA1 promoter in combination with the WIR1a intron is useful for transgenic approaches to fungal disease resistance in cereals.  相似文献   

2.
Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew.  相似文献   

3.
4.
The effect of benzothiadiazole-7-carbothioic acid S-methyl ester (BTH; Bion®) on the autofluorescence responses of adaxial epidermal cells, activity of phenylalanine ammonia-lyase (PAL) as well as fungal penetration efficiency were investigated after inoculation of the wheat cultivars Monopol (susceptible) and Zentos (resistant) with Blumeria graminis f. sp. tritici ( Bgt ). The frequency and intensity of autofluorescence at the Bgt -attempted penetration site were higher in epidermal cells of cv. Zentos than in those of the cv. Monopol. In both cultivars, foliar application of the resistance inducer BTH caused an intensification of the autofluorescent responses localized below the Bgt -appressoria (in papilla and halo). The frequency of Bgt -attacked epidermal cells showing whole-cell autofluorescence (hypersensitive cell death) was low in both cultivars and slightly enhanced by BTH only in cv. Monopol. Two peaks of PAL-activity were detected. The first occurred 4 hai coinciding with primary germ tube formation and the second at 12 hai during appressorium formation. BTH caused a significant increase of the PAL-activity at 12 and 18 hai in cv. Monopol. Increase in PAL-activity was closely associated with enhanced localized autofluorescence, suggesting that the phenomena are correlated. BTH-treatment markedly decreased the penetration efficiency of the powdery mildew fungus in cv. Monopol, but not in cv. Zentos which has high penetration resistance. The results suggest that enhanced PAL-activity and synthesis of autofluorogenic compounds, probably of phenolic nature, are involved in quantitative resistance and in BTH-induced defence mechanisms of wheat plants where they act to inhibit penetration of attacked cells.  相似文献   

5.
The field performance of a viral gene in two Swiss wheat ( Triticum aestivum ) varieties showed 10% increased fungal resistance against Tilletia caries (stinking smut). To the best of our knowledge, this is the first report of improved resistance against any fungus in the field achieved by genetic engineering in wheat. The genetically modified wheat lines previously showed a c . 30% decrease in symptoms of T. caries in the glasshouse (Clausen, M., Kräuter, R., Schachermayr, G., Potrykus, I. and Sautter, C. (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol . 18 , 446–449), depending on the fungal strain inoculated. A glasshouse experiment run in parallel to the field test, and using the same collection of T. caries , gave the same results. In a dose–response experiment with isolated fungal strains, in which the infection pressure was varied via the spore concentration, the transgene behaved as a quantitative resistance gene and shifted the S-shaped dose–response curve towards higher resistance. The transgene was shown to be highly specific for fungi of the order Ustilaginales. Tests of the transgene using cell cultures of eukaryotes, including hamster and human, showed no significant side-effects with respect to biosafety. Endogenous pathogen-related genes were also activated on fungal infection in the presence of the kp4 transgene.  相似文献   

6.
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the transgenic lines were confirmed by northern blot analysis. Chitinase activity levels were measured using an in vitro fluorometric assay. The transgene was expressed at varying levels in the different transgenic lines with up to a sixfold increase of endochitinase activity compared to non-transgenic and transgenic control plants. The in vivo antifungal activity of the transgene against the foliar pathogen Colletotrichum gloeosporioides was evaluated using a cacao leaf disk bioassay. The assay demonstrated that the TcChi1 transgenic cacao leaves significantly inhibited the growth of the fungus and the development of leaf necrosis compared to controls when leaves were wound inoculated with 5,000 spores. These results demonstrate for the first time the utility of the cacao transformation system as a tool for gene functional analysis and the potential utility of the cacao chitinase gene for increasing fungal pathogen resistance in cacao.  相似文献   

7.
Cel1 and Cel2 are members of the tomato (Solanum lycopersicum Mill) endo-beta-1,4-glucanase (EGase) family that may play a role in fruit ripening and organ abscission. This work demonstrates that Cel1 protein is present in other vegetative tissues and accumulates during leaf development. We recently reported the downregulation of both the Cel1 mRNA and protein upon fungal infection, suggesting the involvement of EGases in plant-pathogen interactions. This hypothesis was confirmed by assessing the resistance to Botrytis cinerea infection of transgenic plants expressing both genes in an antisense orientation (Anti-Cel1, Anti-Cel2 and Anti-Cel1-Cel2). The Anti-Cel1-Cel2 plants showed enhanced resistance to this fungal necrotroph. Microscopical analysis of infected leaves revealed that tomato plants accumulated pathogen-inducible callose within the expanding lesion. Anti-Cel1-Cel2 plants presented a faster and enhanced callose accumulation against B. cinerea than wild-type plants. The inhibitor 2-deoxy-d-glucose, a callose synthesis inhibitor, showed a direct relationship between faster callose accumulation and enhanced resistance to B. cinerea. EGase activity appears to negatively modulate callose deposition. The absence of both EGase genes was associated with changes in the expression of the pathogen-related genes PR1 and LoxD. Interestingly, Anti-Cel1-Cel2 plants were more susceptible to Pseudomonas syringae, displaying severe disease symptoms and enhanced bacterial growth relative to wild-type plants. Analysis of the involvement of Cel1 and Cel2 in the susceptibility to B. cinerea in fruits was done with the ripening-impaired mutants Never ripe (Nr) and Ripening inhibitor (rin). The data reported in this work support the idea that enzymes involved in cell wall metabolism play a role in susceptibility to pathogens.  相似文献   

8.
Cassava (Manihot esculenta Crantz) is the most important staple food for more than 300?million people in Africa, and anthracnose disease caused by Colletotrichum gloeosporioides f. sp. manihotis is the most destructive fungal disease affecting cassava production in sub-Saharan Africa. The main objective of this study was to improve anthracnose resistance in cassava through genetic engineering. Transgenic cassava plants harbouring rice thaumatin-like protein (Ostlp) gene, driven by the constitutive CaMV35S promoter, were generated using Agrobacterium-mediated transformation of friable embryogenic calli (FEC) of cultivar TMS 60444. Molecular analysis confirmed the presence, integration, copy number of the transgene all the independent transgenic events. Semi-quantitative RT-PCR confirmed high expression levels of Ostlp in six transgenic lines tested. The antifungal activity of the transgene against Colletotrichum gloeosporioides pathogen was evaluated using the leaves and stem cuttings bioassay. The results demonstrated significantly delayed disease development and reduced size of necrotic lesions in leaves and stem cuttings of all transgenic lines compared to the leaves and stem cuttingss of non-transgenic control plants. Therefore, constitutive overexpression of rice thaumatin-like protein in transgenic cassava confers enhanced tolerance to the fungal pathogen C. gloeosporioides f. sp. manihotis. These results can therefore serve as an initial step towards genetic engineering of farmer-preffered cassava cultivars for resistance to anthracnose disease.  相似文献   

9.
10.
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.  相似文献   

11.
Tomato plants ( Lycopersicon esculentum Mill. cv. Pera) were transformed via Agrobacterium tumefaciens with the binary vector pKYLX71 containing a tomato basic peroxidase (EC 1.11.1.7) gene, tpx1 , under the control of the cauliflower mosaic virus (CaMV35S) promoter. Transgenic plants showed a 2–5-fold increase in the activity of the peroxidase ionically bound to the cell wall, whereas soluble peroxidase activity remained similar or even lower than wild-type plants. Isoelectric focusing showed the presence of a new isoperoxidase of pI ca 9 in the ionically bound extract. Western blot also showed the presence of a new band at 41 kDa that was absent in the wild-type extract. A 40–220% increment of lignin content of the leaf was found in transgenic plants. Shoot phenotype of transgenic plants was similar to wild type, although under stress, the plants appeared wilted and the new leaves had a reduced area and were thicker than wild-type or older transgenic leaves. The root system was underdeveloped in transgenic plants, but the rooting ability of the stem was not affected by the overexpression of peroxidase. Finally, the morphogenetic response of cotyledon and hypocotyl explants from transgenic plants was evaluated. In the case of cotyledons, the percentage of explants with shoot was not different from wild-type plants. For hypocotyl, one of the transgenic lines showed a 30% reduction in the percentage of shoot organogenesis. The results are discussed in relation to the role of tpx1 in lignin synthesis.  相似文献   

12.
Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages. Further, tap1 expression levels were significantly enhanced in response to wounding in breaker- and red-ripe stages of transgenic fruits, whereas wound-induced expression of tap1 was not detected in WT fruits. Confocal microscopy revealed high accumulation of phenolic compounds at the wound site in transgenic fruits suggesting a role of tap1 in wound-induced phenolic polymerization. Total peroxidase activity has increased remarkably in transgenic pericarp tissues in response to wounding, while very less or minimal levels were recorded in WT pericarp tissues. Transgenic fruits also displayed reduced post-harvest decay and increased resistance toward Alternaria alternata and Fusarium solani infection with noticeable inhibition in lesion formation. Conidiospore germination and mycelial growth of F. solani were severely inhibited when treated with E8-tap1 fruit extracts compared to WT fruits. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed reduced spore viability when incubated in E8-tap1 fruit extracts. Thus, fruit-specific expression of tap1 using E8 promoter is associated with enhanced total peroxidase activity and high phenolic accumulation in fruits with minimized post-harvest deterioration caused by wounding and fungal attack in tomato fruits.  相似文献   

13.
The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.  相似文献   

14.
用半定量RT-PCR方法分析小麦TaMlo-A1c基因的表达   总被引:8,自引:0,他引:8  
以小麦稳定表达的肌动蛋白基因(Actin)作为对照,利用半定量反转录聚合酶链式反应(Semi-QRT-PCR)技术,对与抗白粉病有关的小麦(TriticumaestivumL.)TaMlo-A1c基因的表达进行了研究。结果发现:TaMlo-A1c基因在小麦的叶、茎、根中均表达,穗中不表达,在白粉菌(Blumeriagraminis(DC.)E.O.Speerf.sp.triticiEm.Marchal,Bgt)诱导不同时间后小麦叶片中的表达稍微有所增强。研究表明,用半定量RT-PCR技术研究小麦基因表达,具有特异性高、操作简便和可靠性强的优点。  相似文献   

15.
构建了植物过量表达载体p35S::GaSus3,通过花序浸染法成功获得转GaSus3基因拟南芥植株。利用NaCl模拟盐胁迫处理,证实转基因拟南芥与野生型相比耐盐性明显增强。在盐胁迫下,转基因拟南芥受到的影响较小,而野生型则受盐害影响严重:转基因拟南芥具有更好的萌发率和主根长度,以保证植株正常生长;盐胁迫下转基因拟南芥能保持较多的绿色叶片,而野生型则过早黄化死亡。研究还发现,转基因拟南芥的过氧化氢酶活性在胁迫前后都高于野生型,这说明转GaSus3基因能够提高拟南芥抗氧化胁迫的能力。研究结果为进一步探讨GaSus3基因在棉花耐盐方面的功能奠定了基础。  相似文献   

16.
Programmed cell death (PCD) is a common process in eukaryotes during development and in response to pathogens and stress signals. Bax inihibitor-1 (BI-1) is proposed to be a cell death suppressor that is conserved in both animals and plants, but the physiological importance of BI-1 and the impact of its loss of function in plants are still unclear. In this study, we identified and characterized two independent Arabidopsis mutants with a T-DNA insertion in the AtBI1 gene. The phenotype of atbi1-1 and atbi1-2, with a C-terminal missense mutation and a gene knockout, respectively, was indistinguishable from wild-type plants under normal growth conditions. However, these two mutants exhibit accelerated progression of cell death upon infiltration of leaf tissues with a PCD-inducing fungal toxin fumonisin B1 (FB1) and increased sensitivity to heat shock-induced cell death. Under these conditions, expression of AtBI1 mRNA was up-regulated in wild-type leaves prior to the activation of cell death, suggesting that increase of AtBI1 expression is important for basal suppression of cell death progression. Over-expression of AtBI1 transgene in the two homozygous mutant backgrounds rescued the accelerated cell death phenotypes. Together, our results provide direct genetic evidence for a role of BI-1 as an attenuator for cell death progression triggered by both biotic and abiotic types of cell death signals in Arabidopsis.  相似文献   

17.
来源于昆虫病毒和动物的抗细胞凋亡基因能够诱导植物对生物或者非生物胁迫产生抗性.但其抗性机理有不同甚至相反的报道.本研究将来源于苜蓿银纹夜蛾核多角体病毒的p35基因转化烟草,T1代转化烟草Western blotting检测P35蛋白的表达,转化烟草接种烟草花叶病毒(Tobacco mosaic virus,TMV)抗病效果增强.进一步的抗病机理研究表明,转化和野生型烟草感染TMV后诱导过氧化氢积累无明显区别,野生型烟草感染24 h后出现DNA Laddering而转化烟草则没有;Western blotting结果显示PR-1蛋白表达没有显著差异.但接种另外一种病原真菌核盘茵(Sclerotiniasclerotiorum)后的RT-PCR分析结果表明,表达P35蛋白的烟草可增强感染核盘菌后PR-1基因的转录.而且表达时间提前.以上结果说明p35基因介导的广谱抗病反应的机理与接种的不同病原有关,对不同病原物的抗病机理存在差异,除抑制细胞凋亡外,还可能通过激活PR基因的表达提高对病原物的抗病能力.  相似文献   

18.
19.
20.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号