首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arrival of an invasive species can have severe impacts on native species. The extent of the impact, as well as the speed at which native species may mount an adaptive response, depend upon the correlation between impact and the individual phenotypes of the native species. Strong correlation between phenotype and impact within the native species raises the possibility of rapid adaptive response to the invader. Here, we examine the impact of a dangerous newly arrived prey species (the highly toxic cane toad Bufo marinus ) on naïve predators (death adders Acanthophis praelongus ) in northern Australia. During laboratory trials and field radiotracking, toads killed 48% of the adders we studied. Long-term monitoring of the population also suggests a massive decline (>89%) in recent years concurrent with the arrival of toads. Variation in snake physiology (resistance to toad toxin) had little bearing on snake survival in the field. Snake behaviour (tendency to attack toads) and morphology (body size and head size), however, were strong predictors of snake survival. Smaller snakes with relatively small heads, and snakes that were unwilling to attack toads in the laboratory, had much higher survival rates in the field. These results show that toads have a massive impact on death adder populations, but that snake phenotypes strongly mediate this impact. Thus natural selection is operating on these adder populations and an adaptive response is a possibility. If these adders can rapidly shift toad-relevant morphological and behavioural traits (either through plastic or evolved means), they will ultimately face a lowered impact from this toxic invader.  相似文献   

2.
Predictions from foraging theory suggest that the probability a native predator will incorporate a novel type of prey (such as an invasive species) into its diet depends upon the potential benefits (e.g., nutrient input) vs. costs (e.g., handling time) of ingesting it. Cane toads (Bufo marinus) were introduced to Australia in 1935 and are highly toxic to many frog-eating snakes, thus there was strong selection to delete toads from the diet of these species. What has happened, however, to the feeding responses of an Australian snake species that is able to consume toads without dying? Our field surveys in northeastern Queensland show that, despite their high tolerance to toad toxins (compared to other native snakes), keelbacks (Tropidonophis mairii) feed primarily on native frogs rather than cane toads. This pattern occurs because the snakes show active prey preferences; even under standardized conditions in the laboratory, snakes are more likely to consume frogs than toads. When they are force-fed, snakes frequently regurgitate toads but not frogs. Thus, despite the high availability of the abundant toads, these invasive anurans are largely avoided as prey. This probably occurs because consumption of toads, although not lethal to keelbacks, causes significant sublethal effects and confers little nutritional benefit. Hence, keelback populations are not threatened by toad invasion, but neither do the snakes benefit substantially from the availability of a new type of potential prey.  相似文献   

3.
The invasion of a toxic prey type can differentially affect closely related predator species. In Australia, the invasive Cane Toad (Rhinella marina) kills native anurophagous predators that cannot tolerate the toad’s toxins; but predators that are physiologically resistant (i.e., belong to lineages that entered Australia recently from Asia, where toads of other species are common) have been more resilient. In the current study, we examine the case of an Asian-derived predator lineage that relies on behavioural not physiological adaptations to deal with toads. Despite their Asian origins, Common Tree Snakes (Dendrelaphis punctulatus) are highly sensitive to toad toxins; yet this snake has not declined in abundance due to toads. We exposed captive (field-collected) snakes to toads of different sizes and ontogenetic stages, to quantify feeding responses and outcomes. Tree Snakes were less likely to attack toads than to attack native frogs, and rarely retained their hold on large toads. Tree Snakes ingested frogs of a wide range of body sizes but only ingested very small toads (<?1 g vs. up to 30 g for frogs). Behavioural responses were virtually identical between Tree Snakes from invaded versus yet-to-be-invaded areas, suggesting that preadaptation (from Asia) rather than adaptation (within Australia) is the key to successful utilisation of this novel but potentially toxic prey resource. Nonetheless, a previously-documented shift in relative head sizes of Tree Snakes coincident with toad invasion suggests that the ancestral behavioural tactic may have been reinforced by a recent morphological shift that further reduces maximal prey size, and hence the risk of fatal poisoning.  相似文献   

4.
Biological invasions can expose native predators to novel prey which may be less nutritious or detrimental to predators. The introduction and subsequent spread of cane toads (Bufo marinus) through Australia has killed many anuran-eating snakes unable to survive the toad’s toxins. However, one native species, the keelback snake (Tropidonophis mairii), is relatively resistant to toad toxins and remains common in toad-infested areas. Is the keelback’s ability to coexist with toads a function of its ancestral Asian origins, or a consequence of rapid adaptation since cane toads arrived in Australia? And does the snake’s feeding preference for frogs rather than toads reflect an innate or learned behaviour? We compared keelback populations long sympatric with toads with a population that has encountered toads only recently. Unlike toad-vulnerable snake species, sympatry with toads has not affected keelback toxin tolerances or feeding responses: T. mairii from toad-sympatric and toad-naïve populations show a similar sensitivity to toad toxin, and a similar innate preference for frogs rather than toads. Feeding responses of neonatal keelbacks demonstrate that learning plays little or no role in the snake’s aversion to toads. Thus, behavioural aversion to B. marinus as prey, and physiological tolerance to toad toxins are pre-existing innate characteristics of Australian keelbacks rather than adaptations to the cane toad’s invasion of Australia. Such traits were most likely inherited from ancestral keelbacks that adapted to the presence of bufonids in Asia. Our results suggest that the impact of invasive species on native taxa may be strongly influenced by the biogeographic histories of the species involved.  相似文献   

5.
Rapid environmental change due to human activities has increased rates of extinction, but some species may be able to adapt rapidly enough to deal with such changes. Our studies of feeding behaviour and physiological resistance to toxins reveal surprisingly rapid adaptive responses in Australian black snakes (Pseudechis porphyriacus) following the invasion of a lethally toxic prey item, the cane toad (Bufo marinus). Snakes from toad-exposed localities showed increased resistance to toad toxin and a decreased preference for toads as prey. Separate laboratory experiments suggest that these changes are not attributable to learning (we were unable to teach naive snakes to avoid toxic prey) or to acquired resistance (repeated sub-lethal doses did not enhance resistance). These results strongly suggest that black snake behaviour and physiology have evolved in response to the presence of toads, and have done so rapidly. Toads were brought to Australia in 1935, so these evolved responses have occurred in fewer than 23 snake generations.  相似文献   

6.
The prey and feeding frequency in free-living grass snakes was studied during 1993 and 1994 at a site in southern England. Individual snakes and common toads were recognized using PIT tags and a small number of adult snakes were radio-tracked over long periods to determine predation rates.
Grass snakes fed, almost exclusively, on common toads (adult, juvenile, and tadpoles). A positive correlation was found between prey size and snake size. Large snakes did not appear to prey upon small toads, although clearly capable of doing so.
Male and female snakes ate large meals (toads) approximately every 20 days between May and September, with females fasting for a period of about 45 days during gestation and egg-laying. After allowing for differences in the number and size of toads predated by male and female snakes, the mean amount of food consumed per day was estimated to be 2.3% and 1.6% of body weight.  相似文献   

7.
The impact of an invasive species is unlikely to be uniform in space or time, due to variation in key traits of the invader (e.g. morphology, physiology, behaviour) as well as in resilience of the local ecosystem. The weak phylogeographic structure typical of an invasive population suggests that much of the variation in an invading taxon is likely to be generated by the environment and recent colonisation history. Here we describe effects of the environment and colonisation history on key morphological traits of an invader (the cane toad Bufo marinus ). These "key traits" (body size and relative toxicity) mediate the impact of toads on Australian native predators, which often die as a consequence of ingesting a fatal dose of toad toxin. Measurements of museum specimens collected over >60 yr from a wide area show that seasonal variation in toad body size (due to seasonal recruitment) effectively swamps much of the spatial variance in this trait. However, relative toxicity of toads showed strong spatial variation and little seasonal variation. Thus, the risk to a native predator ingesting a toad will vary on both spatial and temporal scales. For native predators capable of eating a wide range of toad sizes (e.g. quolls, varanid lizards), seasonal variation in overall toad size will be the most significant predictor of risk. In contrast, gape-limited predators restricted to a specific range of toad sizes (such as snakes) will be most strongly affected by the relative toxicity of toads. Gape-limited predators will thus experience strong spatial variation in risk from toad consumption.  相似文献   

8.
In the Fiji Islands, female yellow‐lipped sea kraits (Laticauda colubrina) grow much larger than males, and have longer and wider heads than do conspecific males of the same body length. This morphological divergence is accompanied by (and may be adaptive to) a marked sex divergence in dietary habits. Adult female sea kraits feed primarily on large conger eels, and take only a single prey item per foraging bout. In contrast, adult males feed upon smaller moray eels, and frequently take multiple prey items. Prey size increases with snake body size in both males and females, but the sexes follow different trajectories in this respect. Female sea kraits consume larger eels relative to predator head size and body length than do males. Thus, the larger relative head size of female sea kraits is interpreted as an adaptation to consuming larger prey items. Our results are similar to those of previous studies on American water snakes (natricines) and Australian file snakes (acrochordids), indicating that similar patterns of sex divergence in dietary habits and feeding structures have evolved convergently in at least three separate lineages of aquatic snakes.  相似文献   

9.
Richard Shine 《Oecologia》1986,69(2):260-267
Filesnakes (Acrochordus arafurae) are large (to 2 m), heavy-bodied snakes of tropical Australia. Sexual dimorphism is evident in adult body sizes, weight/length ratios, and body proportions (relative head and tail lengths). Dimorphism is present even in neonates. Two hypotheses for the evolution of such dimorphism are (1) sexual selection or (2) adaptation of the sexes to different ecological niches. The hypothesis of sexual selection is consistent with general trends of sexually dimorphic body sizes in snakes, and accurately predicts, for A. arafurae, that the larger sex (female) is the one in which reproductive success increases most strongly with increasing body size. However, the sexual dimorphism in relative head sizes is not explicable by sexual selection.The hypothesis of adaptation to sex-specific niches predicts differences in habitats and/or prey. I observed major differences between male and female A. arafurae in prey types, prey sizes and habitat utilization (shallow versus deep water). Hence, the sexual dimorphism in relative head sizes is attributed to ecological causes rather than sexual selection. Nonetheless, competition between the sexes need not be invoked as the selective advantage of this character divergence. It is more parsimonious to interpret these differences as independent adaptations of each sex to increase foraging success, given pre-existing sexually-selected differences in size, habitat or behavior. Data for three other aquatic snake species, from phylogenetically distant taxa, suggest that sexual dimorphism in food habits, foraging sites and feeding morphology, is widespread in snakes.  相似文献   

10.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

11.
Introduced species have contributed significantly to the extinction of endemic species on islands. They also create new selection pressures on their prey that may result in modified life history strategies. Introduced viperine snakes (Natrix maura) have been implicated in the decline of the endemic midwife toad of Mallorca (Alytes muletensis). A comparison of A. muletensis tadpoles in natural pools with and without snakes showed that those populations subject to snake predation possessed longer tails with narrower tail fins but deeper tail muscles. Field and laboratory experiments showed that these changes in tail morphology could be induced by chemical and tactile cues from snakes. Populations of tadpoles that were subject to snake predation also displayed clear bimodal size-frequency distributions, with intermediate-sized tadpoles missing from the pools completely. Tadpoles in pools frequented by snakes developed faster in relation to their body size than those in pools without snakes. Variation in morphology between toad populations may therefore be caused by a combination of size-selective predation and tadpole plasticity. The results of this study indicate that the introduction of alien species can result in selection for induced defences, which may facilitate coexistence between predator and prey under certain conditions.  相似文献   

12.
The feeding behavior and venom toxicity of the coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity were investigated. Coral snakes searched for their prey (the colubrid snake Geophis godmani) in the cages. Once their preys were located, coral snakes stroke them with a rapid forward movement, biting predominantly in the anterior region of the body. In order to assess the role of venom in prey restraint and ingestion, a group of coral snakes was 'milked' in order to drastically reduce the venom content in their glands. Significant differences were observed between snakes with venom, i.e., 'nonmilked' snakes, and 'milked' snakes regarding their behavior after the bite. The former remained hold to the prey until paralysis was achieved, whereas the latter, in the absence of paralysis, moved their head towards the head of the prey and bit the skull to achieve prey immobilization by mechanical means. There were no significant differences in the time of ingestion between these two groups of coral snakes. Susceptibility to the lethal effect of coral snake venom greatly differed in four colubrid species; G. godmani showed the highest susceptibility, followed by Geophis brachycephalus, whereas Ninia psephota and Ninia maculata were highly resistant to this venom. In addition, the blood serum of N. maculata, but not that of G. brachycephalus, prolonged the time of death of mice injected with 2 LD(50)s of M. nigrocinctus venom, when venom and blood serum were incubated before testing. Subcutaneous injection of coral snake venom in G. godmani induced neurotoxicity and myotoxicity, without causing hemorrhage and without affecting heart and lungs. It is concluded that (a) M. nigrocinctus venom plays a role in prey immobilization, (b) venom induces neurotoxic and myotoxic effects in colubrid snakes which comprise part of their natural prey, and (c) some colubrid snakes of the genus Ninia present a conspicuous resistance to the toxic action of M. nigrocinctus venom.  相似文献   

13.
Although invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time. Populations of large predators (e.g., varanid and scincid lizards, elapid snakes, freshwater crocodiles, and dasyurid marsupials) may be imperilled by toad invasion, but impacts vary spatially even within the same predator species. Some of the taxa severely impacted by toad invasion recover within a few decades, via aversion learning and longer-term adaptive changes. No native species have gone extinct as a result of toad invasion, and many native taxa widely imagined to be at risk are not affected, largely as a result of their physiological ability to tolerate toad toxins (e.g., as found in many birds and rodents), as well as the reluctance of many native anuran-eating predators to consume toads, either innately or as a learned response. Indirect effects of cane toads as mediated through trophic webs are likely as important as direct effects, but they are more difficult to study. Overall, some Australian native species (mostly large predators) have declined due to cane toads; others, especially species formerly consumed by those predators, have benefited. For yet others, effects have been minor or have been mediated indirectly rather than through direct interactions with the invasive toads. Factors that increase a predator's vulnerability to toad invasion include habitat overlap with toads, anurophagy, large body size, inability to develop rapid behavioral aversion to toads as prey items, and physiological vulnerability to bufotoxins as a result of a lack of coevolutionary history of exposure to other bufonid taxa.  相似文献   

14.
Abstract The introduced and highly toxic cane toad (Bufo marinus) is rapidly spreading across northern Australia where it may affect populations of large terrestrial vertebrate predators. The ecological impact of cane toads will depend upon the diets, foraging modes and habitat use of native predators, and their feeding responses to cane toads. However, intraspecific niche partitioning may influence the degree of vulnerability of predators to toxic prey, as well as the time course of the impact of alien invaders on native species. We studied the diet of the northern death adder Acanthophis praelongus and their feeding responses to cane toads. In the laboratory, death adders from all size classes and sexes readily consumed frogs and cane toads. Diets of free ranging A. praelongus from the Adelaide River floodplain were more heterogeneous. Juvenile snakes ate mainly frogs (39% of prey items) and small scincid lizards (43%). Both sexes displayed an ontogenetic dietary shift from lizards to mammals, but adult males fed on frogs (49%) and mammals (39%) whereas adult females (which grew larger than males) fed mainly on mammals (91%) and occasionally, frogs (9%). Feeding rates and body condition of adult snakes varied temporally and tracked fluctuations in prey availability. These results suggest that cane toads may negatively affect populations of northern death adders in the Darwin region. However, we predict that different size and sex classes of A. praelongus will experience differential mortality rates over different timescales. The initial invasion of large toads may affect adult males, but juveniles may be unaffected until juvenile toads appear the following year, and major affects on adult female death adders may be delayed until annual rainfall fluctuations reduce the availability of alternative (rodent) prey.  相似文献   

15.
Information from lizard lineages that have evolved a highly elongate (snake‐like) body form may clarify the selective forces important in the early evolution of snakes. Lizards have evolved bodily elongation via two distinct routes: as an adaptation to burrowing underground or to rapid locomotion above ground. These two routes involve diametrically opposite modifications to the body plan. Burrowing lizards have elongate trunks, small heads, short tails, and relatively constant body widths, whereas surface‐active taxa typically have shorter trunks, wider heads, longer tails, and more variable body widths. Snakes resemble burrowing rather than surface‐active (or aquatic) lizards in these respects, suggesting that snakes evolved from burrowing lizards. The trunk elongation of burrowing lizards increases the volume of the alimentary tract, so that an ability to ingest large meals (albeit consisting of small individual prey items) was present in the earliest snakes. Subsequent shifts to ingestion of wide‐bodied prey came later, after selection dismantled other gape‐constraining morphological attributes, some of which may also have arisen as adaptations to burrowing through hard soil (e.g. relatively small heads, rigid skulls). Adaptations of snake skulls to facilitate ingestion of large prey have evolved to compensate for the reduction of relative head size accompanying bodily elongation; relative to predator body mass, maximum sizes of prey taken by snakes may not be much larger than those of many lizards. This adaptive scenario suggests novel functional links between traits, and a series of testable predictions about the relationships between squamate morphology, habitat, and trophic ecology. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 293–304.  相似文献   

16.
Recent studies have interpreted intraspecific divergence in relative head sizes in snakes as evidence for adaptation of the trophic apparatus in gape-limited predators to local prey size. However, such variation might also arise from non-adaptive processes (such as allometry, correlated response, genetic drift, or non-adaptive phenotypic plasticity). We test predictions from these alternative hypotheses using data on the allometric relationship between head size and body size in two wide-ranging snake species: eight populations of adders ( Vipera berus ) and 30 populations of common gartersnakes ( Thamnophis sirtalis ). Our data enable strong rejection of the alternative (non-adaptive) hypotheses, because the relationship between head and body size differed significantly among populations, the geographic distance separating pairs of populations explained less than 1.5% of their divergence in allometric coefficients, and the within-population allometric coefficients were higher than the among-population coefficients in each species. In addition, the geographical variability of allometric coefficients in females did not parallel that in males, suggesting that allometric coefficients have evolved independently in the two sexes. Phenotypic plasticity also cannot explain the data, because laboratory studies show that the allometric relationship between head size and body size is relatively insensitive to differing growth rates. We conclude that the intraspecific head size divergence in these snakes is better explained by spatially heterogeneous selection to optimize prey handling ability, than by non-adaptive processes.  相似文献   

17.
Adaptations that enhance fitness in one situation can become liabilities if circumstances change. In tropical Australia, native snake species are vulnerable to the invasion of toxic cane toads. Death adders (Acanthophis praelongus) are ambush foragers that (i) attract vertebrate prey by caudal luring and (ii) handle anuran prey by killing the frog then waiting until the frog''s chemical defences degrade before ingesting it. These tactics render death adders vulnerable to toxic cane toads (Bufo marinus), because toads elicit caudal luring more effectively than do native frogs, and are more readily attracted to the lure. Moreover, the strategy of delaying ingestion of a toad after the strike does not prevent fatal poisoning, because toad toxins (unlike those of native frogs) do not degrade shortly after the prey dies. In our laboratory and field trials, half of the death adders died after ingesting a toad, showing that the specialized predatory behaviours death adders use to capture and process prey render them vulnerable to this novel prey type. The toads'' strong response to caudal luring also renders them less fit than native anurans (which largely ignored the lure): all toads bitten by adders died. Together, these results illustrate the dissonance in behavioural adaptations that can arise following the arrival of invasive species, and reveal the strong selection that occurs when mutually naive species first interact.  相似文献   

18.
Why do some predator species specialize on only a single type of prey whereas others take a broad range? One critical determinant may be the ontogenetic range of body sizes of the predator compared to that of its prey. If any single prey taxon spans only part of the range of prey sizes ingestible by the predator, then the predator will be more likely to take multiple prey taxa. We exploit a model system that provides a robust opportunity to test this hypothesis. We studied two sympatric species of predatory sea snakes, similar in size and general ecology that feed on anguilliform fishes from different habitats in the Great Lagoon of New Caledonia. Eel species from soft‐bottom habitats must construct their own burrows, and thus tend to be more slender‐bodied and less variable in body size than eel species that inhabit variable‐sized crevices among hard coral. As a result, a laticaudine sea snake species (Laticauda saintgironsi) that feeds on hard‐coral‐dwelling eels relies primarily on a single prey species: juveniles take young eels whereas adults consume adult eels of the same species. In contrast, a laticaudine species (L. laticaudata) that forages on soft‐bottom eels switches its prey ontogenetically: juveniles take small eel species whereas adults consume large eel species. Thus, habitat‐imposed constraints on the range of body sizes within each prey taxon generate a striking difference in the degree of dietary specialization of two closely related, sympatric predator species.  相似文献   

19.
Shine R  Thomas J 《Oecologia》2005,144(3):492-498
Adaptations of snakes to overpower and ingest relatively large prey have attracted considerable research, whereas lizards generally are regarded as unable to subdue or ingest such large prey items. Our data challenge this assumption. On morphological grounds, most lizards lack the highly kinetic skulls that facilitate prey ingestion in macrostomate snakes, but (1) are capable of reducing large items into ingestible-sized pieces, and (2) have much larger heads relative to body length than do snakes. Thus, maximum ingestible prey size might be as high in some lizards as in snakes. Also, the willingness of lizards to tackle very large prey items may have been underestimated. Captive hatchling scincid lizards (Bassiana duperreyi) offered crickets of a range of relative prey masses (RPMs) attacked (and sometimes consumed parts of) crickets as large as or larger than their own body mass. RPM affected foraging responses: larger crickets were less likely to be attacked (especially on the abdomen), more likely to be avoided, and less likely to provide significant nutritional benefit to the predator. Nonetheless, lizards successfully attacked and consumed most crickets ≤35% of the predator’s own body mass, representing RPM as high as for most prey taken by snakes. Thus, although lizards lack the impressive cranial kinesis or prey-subduction adaptations of snakes, at least some lizards are capable of overpowering and ingesting prey items as large as those consumed by snakes of similar body sizes.  相似文献   

20.
Death adders (genus Acanthophis) differ from most other elapid snakes, and resemble many viperid snakes, in their thickset morphology and ambush foraging mode. Although these snakes are widely distributed through Australia and Papua New Guinea, their basic biology remains poorly known. We report morphological and ecological data based upon dissection of >750 museum specimens drawn from most of the range of the genus. Female death adders grow larger than conspecific males, to about the same extent in all taxa (20% in mean adult snout-vent length,  =  SVL). Most museum specimens were adult rather than juvenile animals, and adult males outnumbered females in all taxa except A. pyrrhus. Females have shorter tails (relative to SVL) than males, and longer narrower heads (relative to head length) in some but not all species. The southern A. antarcticus is wider-bodied (relative to SVL) than the other Australian species. Fecundity of these viviparous snakes was similar among taxa (mean litter sizes 8 to 14). Death adders encompass a broad range of ecological attributes, taking a wide variety of vertebrate prey, mostly lizards (55%), frogs and mammals (each 21%; based on 217 records). Dietary composition differed among species (e.g. frogs were more common in tropical than temperate-zone species), and shifted with snake body size (endotherms were taken by larger snakes) and sex (male death adders took more lizards than did females). Overall, death adders take a broader array of prey types, including active fast-moving taxa such as endotherms and large diurnal skinks, than do most other Australian elapids of similar body sizes. Ambush foraging is the key to capturing such elusive prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号