首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbodies (peroxisomes) comprise a class of organelles with a similar biogenesis but remarkable biochemical heterogeneity. Here, we purified the two distinct microbody family members of filamentous fungi, glyoxysomes and Woronin bodies, from Neurospora crassa and analyzed their protein content by HPLC/ESI‐MS/MS. In the purified Woronin bodies, we unambiguously identified only hexagonal 1 (HEX1), suggesting that the matrix is probably exclusively filled with the HEX1 hexagonal crystal. The proteomic analysis of highly purified glyoxysomes allowed the identification of 191 proteins. Among them were 16 proteins with a peroxisomal targeting signal type 1 (PTS1) and three with a PTS2. The collection also contained the previously described N. crassa glyoxysomal matrix proteins FOX2 and ICL1 that lack a typical PTS. Three PTS1 proteins were identified that likely represent the long sought glyoxysomal acyl‐CoA dehydrogenases of filamentous fungi. Two of them were demonstrated by subcellular localization studies to be indeed glyoxysomal. Furthermore, two PTS proteins were identified that are suggested to be involved in the detoxification of nitroalkanes. Since the glyoxysomal localization was experimentally demonstrated for one of these enzymes, a new biochemical reaction is expected to be associated with microbody function.  相似文献   

2.
The positions of all Woronin bodies in five germlings of Aspergillus nidulans prepared by plunge freezing and freeze substitution were determined by transmission electron microscopy. As expected, Woronin bodies were found near septa. High numbers of morphologically identical organelles were also found in apical regions. To verify that these organelles were authentic Woronin bodies, we used antibodies raised against the Neurospora crassa Woronin body matrix protein Hex1. Anti-Hex1 antibodies labeled Woronin bodies at septa and in apical regions of A. nidulans. In germlings that had not yet formed septa, at least fifty percent of Woronin bodies were found within 2.5 μm of the tip. In germ tubes that had formed septa, the total number of Woronin bodies remained the same, but only twenty percent were near the tip. Our results clearly establish that Woronin bodies are found in apical regions of Aspergillus germ tubes and suggest that Woronin bodies are transported from the apex to the more basal regions of the cell immediately before or during septation.  相似文献   

3.
Calvo MA  Agut M 《Mycopathologia》2002,153(3):137-139
Woronin bodies are cytoplasmic organelles of filamentous fungi that can be observed on one, or both sides of each septum. The goal of this paper is to illustrate the presence of them in hyphae of Arthrinium aureum by means of scanning electron microscopy and to show that they act as a safety plug to close septa pores in hypha. Results show that Woronin bodies as an immediate response to prevent a cytoplasm loss. Results support hypothesis proposed previously in literature. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Woronin bodies of filamentous fungi   总被引:7,自引:0,他引:7  
  相似文献   

5.
Peroxisomes are ubiquitous organelles characterized by a protein-rich matrix surrounded by a single membrane. In filamentous fungi, peroxisomes are crucial for the primary metabolism of several unusual carbon sources used for growth (e.g. fatty acids), but increasing evidence is presented that emphasize the crucial role of these organelles in the formation of a variety of secondary metabolites. In filamentous fungi, peroxisomes also play a role in development and differentiation whereas specialized peroxisomes, the Woronin bodies, play a structural role in plugging septal pores. The biogenesis of peroxisomes in filamentous fungi involves the function of conserved PEX genes, as well as genes that are unique for these organisms. Peroxisomes are also subject to autophagic degradation, a process that involves ATG genes. The interplay between organelle biogenesis and degradation may serve a quality control function, thereby allowing a continuous rejuvenation of the organelle population in the cells.  相似文献   

6.
Hyphae of filamentous Ascomycota consist of compartments that are connected via septal pores. To avoid a dramatic loss of cellular content after wounding, fungi developed mechanisms to occlude their septal pores. In most Pezizomycotina, so‐called Woronin bodies are anchored in proximity to the pore. This is a prominent example for precise spatial positioning of organelles, but so far the underlying molecular organization has remained largely unknown. Using the pathogenic mould Aspergillus fumigatus, we provide evidence that Woronin bodies are important for stress resistance and virulence. Furthermore the molecular machinery anchoring them at the septum is described. Namely, we have identified Lah as the tethering protein and provide evidence that the Woronin body protein HexA binds to the septal pore in a Lah‐dependent manner. Moreover, we demonstrate that a striking poly‐histidine motif targets HexA to the septal cell wall. Thus, the axis HexA‐Lah is an excellent candidate for the tether linking Woronin bodies to the septum. This model applies to A. fumigatus, but most likely also to the vast majority of the Pezizomycotina. Our findings shed light on the evolution of Woronin body anchoring and provide a basis for the development of novel strategies to combat fungal pathogens like A. fumigatus.  相似文献   

7.
Summary As part of an investigation on the developmental biology ofCoelomomyces dodgei Couch (Blastocladiales, Chytridiomycetes), the ultrastructure of the male and female gametes was studied. The nucleus is central and conical in shape except for a basal spur that curves back towards the large plate-like mitochondrion. A nuclear cap of ribosomes sits on the flat anterior end of the nucleus. Approximately seven lipid globules are partially embedded in the mitochondrion and are interconnected by membrane cisternae. The lipid globules are covered by a single fenestrated microbody and a backing membrane lies between the microbody and the gamete plasma membrane. The kinetosome is at the base of the nucleus and is connected to a single, posterior, whiplash flagellum. A nonkinetosomal centriole is absent. In the peripheral cytoplasm of both mating types there is a paracrystalline body of unknown composition and function. No significant ultrastructural differences were found between the male and female gametes.  相似文献   

8.
Summary Determining how the orientation and association among organelles are maintained within zoospores of theChytridiales is important to understanding the control of zoospore motility. Zoospores of the aquatic fungi,Chytriomyces aureus andC. hyalinus, contain microbody-lipid globule complexes with an elongate microbody adjacent to the portion of a lipid globule facing the cell's interior and a fenestrated cisterna (the rumposome) opposed to the surface of the lipid globule toward the plasma membrane. Mitochondria are intimately associated with the microbody. Electron microscopy of the microbody-lipid globule complex fixed in glutaraldehyde and osmium tetroxide, with or without tannic acid, reveals cross-linking bridges connecting the rumposome to the plasma membrane, to the microbody, and to microtubules of the rootlet extending from the kinetosome. It is concluded that these bridges are responsible, at least in part, for the consistent location of the microbody-lipid globule complex in the zoospore body. The possible role of the rumposome as a receptor organelle is discussed.  相似文献   

9.
《Experimental mycology》1989,13(3):203-211
Differential centrifugation of whole homogenates ofPenicillium chrysogenum, disrupted by a modified Ballotini bead method, resulted in the enrichment of Woronin bodies between 800g (5 minutes) and 6000g (10 minutes). Isolated Woronin bodies are membrane-bounded, electron-opaque, approximately spherical organelles, 0.11 to 0.29 μm in diameter. Woronin bodies have a buoyant density (ϱ) of 1.21 g cm−3 and S20,w values of 6300 to 37,600 in sucrose gradients. Analytical subcellular fractionation of whole homogenates in a zonal rotor showed that Woronin bodies did not cosediment with marker enzymes for lysosomes (acid phosphatase), peroxisomes (catalase), mitochondria (cytochrome c oxidase), or endoplasmic reticulum (NADPH cytochrome c reductase).  相似文献   

10.
Peroxisome-derived Woronin bodies of the Ascomycota phyla, and the endoplasmic reticulum (ER)-derived septal pore cap (SPC) of the Basidiomycota, are both fungal organelles that prevent cytoplasmic bleeding when multicellular hyphal filaments are wounded. Analysis of Woronin body constituent proteins suggests that these organelles evolved in part through gene duplication and co-opting of non-essential genes for new functions, indicating that new organelles can arise through typical evolutionary mechanisms. Interestingly, clades possessing the Woronin body and SPC also produce the largest and most complex multicellular fungal reproductive structures. Certain Woronin body and SPC mutants have defects in growth and development, suggesting functions beyond cellular wound healing. I argue that studying these specialized systems will help to reveal the basis for fungal diversity and provide general principles for co-evolution of organelles and multicellular complexity.  相似文献   

11.
C Meban 《Histochemistry》1975,43(4):367-372
The fine structural localization of nonspecific alkaline phosphatase was studied in the granular pneumonocytes (type II alveolar epithelial cells) of hamster lung by incubating sections of glutaraldehyde-fixed tissues in a medium containing lead ions and sodium beta-glycerophosphate or alpha-naphthyl acid phosphate. The specificity of the reaction was tested by exposing the sections to inhibitors of alkaline phosphatase. The results showed that alkaline phosphatase activity was present in the inclusion bodies of granular pneumonocytes. The enzyme reaction was strong in the membrane lining the inclusion bodies and a weaker reaction was generally detectable in the inclusion contents. Although only a proportion of the inclusion bodies showed enzyme activity, there was no obvious correlation between the reactivity of the inclusions and their intracellular position or size. The other organelles were unreactive. The finding of alkaline phosphatase activity within the inclusion bodies of granular pneumonocytes is an enigma as these organelles are generally considered to be lyosomes.  相似文献   

12.
The histology of the ovotestis was studied by light and electron microscopy in two nudibranch gastropod species. While in Hypselodoris tricolor the ovotestis is intimately associated with the digestive gland tissue, the large gonadal mass of Godiva banyulensis is placed freely in the haemocoele. This fact results in great histological differences between both species. As is common among Mollusca, the immature yolk granule in Hypselodoris and Godiva presumably originates from membrane-rich cytoplasmic inclusions, which we have termed dense multivesicular bodies. Such inclusions consist of an outer membrane enclosing membrane remnants and a granular, electron-dense material. These elements are accumulated and mixed in the center of the dense multivesicular body and could be actually transformed into the paracrystalline core of the immature yolk granule, the cortex of which is made up of part of the central accumulation materials that have not spread into the crystal. During vitellogenesis, some mitochondria are subjected to a process of transformation affecting mainly their inner membrane (including mitochondrial cristae) and matrix. However, the conversion of modified mitochondria into yolk precursors, as reported for other gastropod species, could not be determined with absolute certainty on the basis of our observations on static material. The mature yolk granule consists of a central paracrystalline core, similar in structure to that of the immature yolk granule, and a peripheral membranous cortex, which seems to spread centripetally, thus permitting the crystal to grow. The cortical material consumed in synthesizing the central core appears to be restored by addition of degenerative mitochondria to the yolk granule surface.  相似文献   

13.
Filamentous ascomycetes harbor Woronin bodies and glyoxysomes, two types of microbodies, within one cell at the same time. The dominant protein of the Neurospora crassa Woronin body, HEX1, forms a hexagonal core crystal via oligomerization and evidence has accumulated that Woronin bodies bud off from glyoxysomes. We analyzed whether HEX1 is sufficient to induce Woronin body formation upon heterologous expression in Saccharomyces cerevisiae, an organism devoid of this specialized organelle. In wild-type strain BY4742, initial import of HEX1 into existing peroxisomes enabled the formation of organelles with a hexagonal crystal. The observed structures mimicked the shape of genuine Woronin bodies, but exhibited a lower density and were significantly larger. Double-immunofluorescence analysis revealed that hexagonal HEX1 structures only occasionally co-localized with peroxisomal marker proteins, indicating that the Woronin-body-like structures are well separated from peroxisomes. In cells lacking Vps1p and Dnm1p, dynamin-like proteins required for the division of peroxisomes, the Woronin-body-like organelles remained attached to peroxisomes. The data indicate that Woronin bodies emerge after the formation of a HEX1 core crystal within peroxisomes followed by Vps1p- and Dnm1p-mediated fission.  相似文献   

14.
R. Molowitz  M. Bahn  B. Hock 《Planta》1976,132(2):143-148
Summary The distribution of glyoxylate-cycle enzymes between microbodies and mitochondria was examined in ethanol-grown Aspergillus tamarii Kita. Particulate activities of catalase and the two glyoxylate by-pass enzymes, malate synthase and isocitrate lyase, were localized in the microbodies. The microbodies had a buoyant density of about 1.23 g cm-3 after isopycnic centrifugation in linear sucrose gradients. Particulate activities of the other two glyoxycitrate synthase, together with that of succinate dehydrogenase were restricted to the mitochondria, which had a buoyant density of about 1.20 g cm-3. Catalase also appeared to be localized in a second particle, perhaps the microbody inclusions or the Woronin bodies, having a buoyant density of about 1.26 g cm-3.  相似文献   

15.
Glycosomes are membrane-bounded microbody organelles that compartmentalize glycolysis as well as other important metabolic processes in trypanosomatids. The compartmentalization of these enzymatic reactions is hypothesized to play a crucial role in parasite physiology. Although the metabolic role of glycosomes differs substantially from that of the peroxisomes that are found in other eukaryotes, similarities in signals targeting proteins to these organelles suggest that glycosomes and peroxisomes may have evolved from a common ancestor. To examine this hypothesis, as well as gain insights into the function of the glycosome, we used a positive genetic selection procedure to isolate the first Leishmania mutant (gim1-1 [glycosome import] mutant) with a defect in the import of glycosomal proteins. The mutant retains glycosomes but mislocalizes a subset glycosomal proteins to the cytoplasm. Unexpectedly, the gim1-1 mutant lacks lipid bodies, suggesting a heretofore unknown role of the glycosome. We used genetic approaches to identify a gene, GIM1, that is able to restore import and lipid bodies. A nonsense mutation was found in one allele of this gene in the mutant line. The predicted Gim1 protein is related the peroxin 2 family of integral membrane proteins, which are required for peroxisome biogenesis. The similarities in sequence and function provide strong support for the common origin model of glycosomes and peroxisomes. The novel phenotype of gim1-1 and distinctive role of Leishmania glycosomes suggest that future studies of this system will provide a new perspective on microbody biogenesis and function.  相似文献   

16.
Lauritz W. Olson 《Protoplasma》1973,78(1-2):113-127
Summary The arrangement of cellular organelles within the meiospore ofAllomyces macrogynus was found to be similar to the zoospore of this species, with the exception that the meiospore contains membrane enclosed electron dense reserve material which has the appearance of the gamma bodies observed in the zoospores ofBlastocladiella. The three dimensional structure of the side body complex is analyzed with serial sections and compared to homologous organelles in other members of theChytridiomycetes.  相似文献   

17.
Zoospore ultrastructure (incl. flagellar apparatus) has been investigated in three species ofTrebouxia (T. glomerata, T. erici, T. pyriformis) and one species ofPseudotrebouxia (P. impressa) using an absolute configuration analysis. Zoospores in all taxa studied are nearly identical in ultrastructure and exhibit a very distinctive disposition of cell organelles: cells are naked, biflagellate and considerably flattened along the plane of flagellar beat, the single contractile vacuole is located anteriorly in the ventral region of the cell, the nucleus is anteriorly to centrally located in the dorsal region of the cell. A single dictyosome is located close to the anterior, ventral edge of the nucleus. The chloroplast occupies a posterior position in the cell and usually has an anterior profile in the left region of the cell. There are two branched mitochondria per cell or a single mitochondrial reticulum with profiles anterior to the nucleus (in the dorsal region of the cell), and posterior to the nucleus. In zoospores ofTrebouxia spp. the posterior mitochondrial profile is associated with a microbody, inP. impressa zoospores the anterior mitochondrial profiles are associated with a microbody. The zoospores contain a distinctive system of three ER-cisternae: one system links to both basal bodies and extends to the nucleus, the other two systems subtend the plasmamembrane on the left and right broad cell surfaces and extend to the posterior region of the cell. The flagellar apparatus is structurally identical to that previously described for zoospores ofFriedmannia israelensis and exhibits basal body displacement by one basal body diameter into the 11/5 o'clock direction, a non-striated distal connecting fiber, a cruciate microtubular root system lacking system I fibers and presence of a single system II fiber which connects the basal bodies with the nucleus and runs parallel to one of the ER-strands. The left flagellar roots (X-roots) are subtended by a complex set of amorphous and striated material that connects each left root with both basal bodies.—This study demonstrates the close systematic relationship between the phycobiontsTrebouxia andPseudotrebouxia and the generaFriedmannia, Pleurastrum, andMicrothamnion and supports recent classification schemes which place all these taxa into a single order separate from otherChlorophyta. Dedicated to Prof. DrElisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

18.
The ferritin gene (cft) of Campylobacter jejuni was overexpressed in cells of Escherichia coli using a T7 RNA polymerase expression system. Many round particles which were the same size as the ferritin particles purified from C. jejuni were observed in the lysate of the cft-overexpressed E. coli cells. Since most of them were devoid of a central electron dense core consisting of ferric irons, the Campylobacter ferritins overproduced in E. coli seemed to be apoferritin. When large amounts of ferrous iron (supplied as FeSO4) were added to culture medium, the cft-overexpressed cells formed large inclusion bodies of paracrystalline arrays comprised of ferritin particles with central electron dense cores. The addition of ferric irons did not produce paracrystalline inclusion.  相似文献   

19.
The material of pine seeds used in this investigation was collected in 1982 from Peking. The microbodies of mature embryo ceils are very well developed and their diameter averages about 2–3 μm, even up to 4.3 μm. The appearance is usually ovoid or elliptic. The microbodies are essentially glyoxysomes. The microbody matrix is composed of two types of substances, one type is of a finely granular material in a densely arrangement (Plate Ⅲ Fig. 6); the other is of coarsely granular or flocculant in appearance and the elements of the matrix are loosely distributed. These matrices usually contain an amorphous inclusion or crystalline arrays in regular arrangement. The inclusion sometimes occupies a small portion of the microbody matrix (Plate Ⅲ, Figs, 5, 6) and sometimes the inclusion occupies nearly the entire glyoxysome (Plate Ⅱ, Fig. 3). It is interesting that the “pockets” frequently appear in the microbodies of mature embryo cells, and those are actually as a result of invagination in microbodies (Plate Ⅱ, Fig. 4). In addition, an electron-transparent “oil body-like space” occurs occasionally in microbody (Plate Ⅰ, Fig. 1). The periphery of “space” is a constitutive part of matrix or continuing with the matrix. This “space” may be due to the degradation in a part of the matrix. While the periphery of the pocket is membranaceous and an electron-opaque cytoplasmic groundplasm was found within the pocket. The microbodies of mature embryo cells in Pinus are mainly distributed in pericolumn cells of the root cap and cortical cells of the hypocotyl. Besides the dominant organelles of lipid bodies in the cells of above mentioned tissues, there are also microbodies, amyloplasts, mitochondria, plastids, endoplasm reticulum and Golgi apparatus, of which the microbodies are the most aboundant organelles. In contrast, the microbodies and other organelle are rare in the parenchyma of the cotyledons in Pinus. Their common and outstanding characteristics in various tissues of mature embryo is that the entire cytoplasm of the cells is almost full of the lipid bodies, and each organelle is directly surrounded by a number of lipid bodies (Plate Ⅰ—Ⅲ, Figs. 1–6). Because of the other organelles are rare in parenchyma of the cotyledons, the lipid bodies are so appressed with each other that the inlaid periphery of lipid bodies frequently occurs in some degree. To sum up, based upon 'the state of distribution of microbodies in mature embryo tissues, cotyledons of Pinus could be considered as the main storage organ of nutrient substances, while the root cap and hypocotyl are the important sites of glyoxysome metabolism. The function of glyoxysomes is to convert lipid into the carbohydrates and to transfer the latter to embryos for growth.  相似文献   

20.
Summary Osmotic contraction of protoplasts isolated from cold acclimated leaves ofSecale cereale L. cv. Puma results in the formation of exocytotic extrusions of the plasma membrane. Numerous knobs or polyps were observed on the surface of the protoplasts with scanning electron microscopy. In thin sections, the extrusions were bounded by the plasma membrane with a densely osmiophilic interior. Cross-fracturing of the extrusions revealed aparticulate bodies within, a further indication that the interior of the extrusions was predominantly lipid material. Freeze-fracture of the plasma membrane suggests a possible source of this lipid material. Following osmotic contraction, the particle density on the plasma membrane protoplasmic face (PFp) increased, being reflected in both a substantial increase in paracrystalline arrays and an increase in the particle density in non-crystalline regions. This increase in particle density indicates that lipid material is preferentially lost from the plasma membrane during contraction. The density on the exoplasmic face (EFp) did not change. Together, these findings suggest that during hypertonic contraction of acclimated protoplasts, lipid material is preferentially subducted from the plasma membrane and sequestered into lipid bodies (the osmiophilic regions). The formation of lipid bodies and extrusions was readily reversible. Following osmotic expansion of acclimated protoplasts, the extrusions were retracted back into the plane of the plasma membrane.Department of Agronomy Series Paper no. 1497.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号