首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

2.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the distal-tubular membranes, but in proximal-tubular membranes this exchange system was not demonstrable. The presence of Na+ outside the vesicles gradually inhibited the ATP-dependent Ca2+ uptake in the distal-tubular-membrane preparations, but remained without effect in those from the proximal tubules. The activity of the Na+/Ca2+ exchange system in the distal-tubular membranes was a function of the imposed Na+ gradient. These results suggest that the major differences in the characteristics of Ca2+ transport in the proximal and in the distal tubules are due to the high activity of a Na+/Ca2+ exchange system in the distal tubule and its virtual absence in the proximal tubule.  相似文献   

3.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

4.
Saponins can both permeabilize cell plasma membranes and cause positive inotropic effects in isolated cardiac muscles. Different saponins vary in their relative abilities to cause each effect suggesting that different mechanisms of action may be involved. To investigate this possibility, we have compared the effects of seven different saponins on the passive Ca2+ permeability and Na+-Ca2+ exchange activity of isolated canine cardiac sarcolemmal membranes. Saponins having hemolytic activity reversibly increased the passive efflux of Ca2+ from sarcolemmal vesicles preloaded with 45Ca2+ with the following order of potency: echinoside-A greater than echinoside-B greater than holothurin-A greater than holothurin-B greater than sakuraso-saponin. Ginsenoside-Rd and desacyl-jego-saponin, which lack hemolytic activity, had no significant effect on this variable. The saponins also stimulated Na+-Ca2+ exchange activity measured as Na+-dependent Ca2+ uptake by sarcolemmal vesicles. Ginsenoside-Rd and desacyl-jego-seponin, which did not affect passive Ca2+ permeability, stimulated the uptake, while in contrast, echinoside-A and -B only slightly increased or decreased this latter variable. Thus, the abilities of these compounds to enhance Na+-Ca2+ exchange activity seem to be inversely related to their abilities to increase the Ca2+ permeability. Effects by the echinosides on Na+-Ca2+ exchange may be masked by the loss of Ca2+ from the vesicles due to the increased permeability. These results suggest that the saponins interact with membrane constituent(s) that can influence the passive Ca2+ permeability and the Na+-Ca2+ exchange activity of cardiac sarcolemmal membranes.  相似文献   

5.
The ouabain-insensitive, active Na+ uptake of inside-out vesicles prepared with basolateral plasma membranes from rat kidney proximal tubular cells can be increased by the presence of micromolar concentrations of Ca2+ in the assay medium. The concomitant ATP hydrolysis associated with the Na+ uptake is also increased by the presence of Ca2+. The Na+ uptake and the concomitant ATP hydrolysis are inhibited by 2 mM furosemide. The effect of Ca2+ is not due to the activity of an Na+-Ca2+ exchanger. The present results are in accordance with our previous model (Proverbio, F., Proverbio, T. and Marín, R. (1982) Biochim. Biophys. Acta 688, 757-763) in which we proposed that Ca2+ seems to modulate the activity of the ouabain-insensitive Na+ pump, in two different ways: (1) in a strong association with the membranes in which Ca2+ (stable component) is essential for the pump activity and (2) in a weak association with the membranes in which Ca2+ (labile component) can be quickly and easily removed by reducing the free Ca2+ concentration of the assay medium to values lower than 1 microM. The Ka for Ca2+ (for the labile component) is around 5 microM. The Ca2+ modulation of the ouabain-insensitive Na+ pump is an indication that Ca2+ could regulate the magnitude of the Na+ extrusion accompanied by Cl- and water present in rat kidney proximal tubular cells.  相似文献   

6.
The effect of phosphatidylethanolamine N-methylation on Na+-Ca2+ exchange was studied in sarcolemmal vesicles isolated from rat heart. Phosphatidylethanolamine N-methylation following incubation of membranes with S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation, inhibited Nai+-dependent Ca2+ uptake by about 50%. The N-methylation reaction did not alter the passive permeability of the sarcolemmal vesicles to Na+ and Ca2+ and did not modify the electrogenic characteristics of the exchanger. The depressant effect of phosphatidylethanolamine N-methylation on Nai+-dependent Ca2+ uptake was prevented by S-adenosyl-L-homocysteine, an inhibitor of the N-methylation. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino-group-blocking agent, also prevented methylation-induced inhibition of Ca2+ uptake. In the presence of exogenous phospholipid substrate, the phospholipid N-methylation process in methyl-acetimidate-treated sarcolemmal vesicles was restored and the inhibitory effect on Ca2+ uptake was evident. These results suggest that phosphatidylethanolamine N-methylation influences the heart sarcolemmal Na+-Ca2+ exchange system.  相似文献   

7.
Monoclonal antibodies 44D7 and 4F2 inhibited specifically the Na+-dependent Ca2+ fluxes characteristic of the Na+/Ca2+ exchanger in cardiac and skeletal muscle sarcolemmal vesicles. Preincubation of membrane vesicles with monoclonal antibody 44D7 inhibited 90% of the Na+-dependent Ca2+ uptake measured in the first 10 s of the reaction and 50% of that measured after 60 s. Ca2+/calmodulin-dependent ATPase activity and ATP-dependent Ca2+ uptake by sarcolemmal vesicles were not affected by monoclonal antibody 44D7 whereas the Na+-dependent release of accumulated Ca2+ was inhibited. In the presence of the 44D7 antigen isolated from human kidney, monoclonal antibody 44D7 could no longer inhibit Na+-dependent Ca2+ fluxes. The distribution of 4F2 antigenic activity in the isolated muscle membrane fractions correlated with that of Na+/Ca2+ exchanger activity; cardiac and skeletal muscle sarcolemmal vesicles expressed higher levels of the antigen than skeletal muscle transverse tubule membrane, while no antigen could be detected in sarcoplasmic reticulum membranes. Our results suggest that monoclonal antibodies 44D7 and 4F2 interact either directly with the Na+/Ca2+ exchanger molecules or with some other protein(s) responsible for the regulation of this activity in the heart and skeletal muscle.  相似文献   

8.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

9.
The effect of fatty acid and acylcarnitine on Ca2+ and Na+ transporting enzymes and carriers was studied in sealed cardiac sarcolemma vesicles of mixed polarity. Palmitoylcarnitine markedly reduced the Na+ gradient-induced Ca2+ uptake. Half-maximal reduction was obtained at 15 microM of the carnitine derivative. In a same concentration range palmitoylcarnitine caused a rapid release of accumulated Ca2+ when added to Ca2+-filled vesicles, which suggests that palmitoylcarnitine increases the permeability of the sarcolemma vesicles to Ca2+. A rapid release of Ca2+ was also observed if Ca2+ was taken up by action of the Ca2+ pump. The (Ca2+ + Mg2+)-ATPase, which most likely drives this active Ca2+ uptake, was 90% increased by 50 microM palmitoylcarnitine and evidence was presented that the acylcarnitine effect again was linked to an alteration of Ca2+ permeability of the vesicles. At the same concentration acylcarnitine was not able to unmask the latent protein kinase, so that probably the sarcolemma ATP permeability was not affected. Palmitoylcarnitine at 25 microM did not affect the ouabain-sensitive (Na+ + K+) -ATPase in native sarcolemma vesicles, however, it inhibited markedly if the enzyme was measured in SDS-treated vesicles. The effect of increased free fatty acid concentration on some of the sarcolemma transporting properties was tested by adding oleate-albumin complexes with different molar ratios to the sarcolemma vesicles. In contrast to molar ratios 1 and 5, the ratio of 7 was able to induce a rapid Ca2+ release and to inhibit (Na+ + K+)-ATPase in either native or SDS-treated vesicles markedly. 22Na release from 22Na-preloaded sarcolemma vesicles was shown to be stimulated by either palmitoylcarnitine (50 microM) or oleate-albumin complex (with a molar ratio of 7). The possible significance of the observed effects of lipid intermediates on ion permeability and (Na+ + K+)-ATPase activity in isolated sarcolemma vesicles for the derangement of cardiac cell function in ischemia is discussed.  相似文献   

10.
1. Taurine, but not GABA, beta-alanine and glycine, inhibited Na(+)-dependent Ca2+ uptake in bovine cardiac sarcolemmal membrane vesicles in a dose-dependent manner. 2. The inhibition of Na(+)-dependent Ca2+ uptake was noncompetitive with respect to Ca2+ concentration. 3. The inhibitory effect of taurine on the exchange was also observed in cardiac sarcolemmal vesicles prepared from guinea pig, but not from rat. 4. Taurine did not affect Na(+)-dependent Ca2+ efflux nor ATP-dependent Ca2+ uptake in the bovine cardiac membranes.  相似文献   

11.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

12.
Regulation of calcium content in bovine spermatozoa   总被引:2,自引:0,他引:2  
Plasma membrane vesicles isolated from bovine epididymal and ejaculated spermatozoa have widely different capabilities for transporting Ca2+. Spermatozoa were ruptured by nitrogen cavitation, and the plasma membrane fraction was harvested after low speed and sucrose gradient centrifugation; purity was assessed by marker enzyme analyses, electron microscopy, and sedimentation properties. Plasma membrane vesicles isolated from epididymal sperm accumulate Ca2+ passively at a faster rate and to a greater extent than vesicles prepared from ejaculated sperm. Ca2+ transport across bovine sperm plasma membranes is an ATP-independent, Na+-dependent process that obligatorily exchanges intravesicular Na+ for external Ca2+. The rate of Na+/Ca2+ exchange is significantly lower in ejaculated sperm vesicles than in those of epididymal sperm. Bovine plasma membranes contain little or no Ca2+-dependent ATPase activity. It is suggested that, at the time of ejaculation, calcium flux into bovine sperm is prevented by the interaction of the plasma membrane with putative factors in seminal fluid that specifically interfere with Na+/Ca2+ exchange. We have isolated a protein from seminal plasma that prevents calcium accumulation by bovine epididymal sperm (Rufo, G. A., Jr., Singh, J. P., Babcock, D. F., and Lardy, H. A. (1982) J. Biol. Chem. 257, 4627-4632). A protein with properties resembling those of the seminal calcium transport inhibitor is found on the membrane vesicles from ejaculated sperm but not on membranes from epididymal sperm. We conclude that this protein binds strongly to the plasma membrane of bovine sperm and is responsible for preventing calcium uptake by ejaculated sperm.  相似文献   

13.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

14.
The role of intracellular Ca2+ as essential activator of the Na+-Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 microM free calcium exhibited a 2-fold increase in the initial rate of Na+i-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+-Ca2+ exchange (i.e. Na+i-Ca2+o exchange) is saturated at about 100 microM Ca2+i and displays an apparent K 1/2 of 12 microM. Intravesicular Ca2+ produced activation of Na+i-Ca2+i exchange activity rather than an increase in Ca2+ uptake due to Ca2+-Ca2+ exchange. The presence of Ca2+i was essential for the Na+i-dependent Na+ influx, a partial reaction of the Na+-Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Ca2+i an additional Na+-Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+-Ca2+ exchange system.  相似文献   

15.
Lanthanides (La3+, Pr3+ and Tb3+) inhibit Na+-gradient-dependent Ca2+ influx into synaptic plasma membrane vesicles. 50% inhibition is obtained by 7 microM lanthanide concentration. The inhibition of the Na+-gradient-dependent Ca2+ uptake exhibits competitive kinetic behaviour. The apparent Km of the Ca2+ influx is increased from 50 microM in the absence of lanthanides to 118 microM in the presence of La3+, 170 microM in the presence of Pr3+ and 130 microM in the presence of Tb3+. The maximal reaction velocity is not altered (8.35 nmol Ca2+ transported per mg protein per min in the absence of lanthanides and 8.16 nmol/mg per min in the presence of lanthanides). Lanthanides also inhibited Na+-gradient-dependent Ca2+ efflux from synaptic plasma membrane vesicles that were preloaded with Ca2+ in a Na+-gradient-dependent manner. Introduction of La3+ into the interior of the synaptic plasma membrane vesicles by rapid freezing of the vesicles in liquid N2 and slow thawing had no effect on either Na+-gradient-dependent Ca2+ influx or efflux. Synaptic plasma membrane vesicles can be preloaded with Ca2+ also in an ATP-dependent manner. This form of Ca2+ uptake is also inhibited by La3+ though at higher concentrations than the Na+-gradient-dependent Ca2+ uptake. Na+-gradient-dependent efflux from synaptic plasma membrane vesicles preloaded in an ATP-dependent fashion ('inside-out' vesicles) unlike efflux from synaptic plasma membrane vesicles preloaded in a Na+-gradient-dependent manner was not inhibited by La3+. These findings suggest that the inhibition by La3+ is manifested asymmetrically on both sides of the synaptic plasma membrane. Lanthanides are probably not transported via the Na+-Ca2+ exchanger since Tb3+ entry measured by fluorescence of Tb3+-dipicolinic acid complex formation occurred at high Tb3+ concentrations only (1.5 mM or above) and was not Na+-gradient dependent.  相似文献   

16.
Plasma membrane vesicles were prepared from guinea pig peritoneal exudate neutrophils, using nitrogen cavitation to rupture the plasma membrane and differential centrifugation to separate the vesicles. The vesicles were enriched 13.2-fold in (Na+, K+)-ATPase activity and had a cholesterol:protein ratio of 0.15, characteristic of plasma membranes. Contamination of the vesicle preparation with DNA or marker enzyme activities for intracellular organelles was very low. Studies designed to determine vesicle sidedness and integrity indicated that 33% were sealed, inside-out; 41% were sealed, right side-out, and 26% were leaky. The vesicles accumulated 45Ca2+ in a linear fashion for 45 min. The uptake was dependent on the presence of oxalate and MgATP in the incubating medium. Uptake showed a Ka for free Ca2+ of 164 nM and a Vmax of 17.2 nmol/mg . min (based on total protein). GTP, ITP, CTP, UTP, ADP, or AMP supported uptake at rates less than or equal to 11% of ATP. Ca2+ uptake was maximal at pH 7-7.5. Calcium stimulated the hydrolysis of ATP by the vesicles with a Ka for free Ca2+ of 440 nM and Vmax of 17.5 nmol/mg . min (based on total protein). When the Ca2+ uptake rate was based upon those vesicles expected to transport Ca2+ (33% sealed, inside-out vesicles) and Ca2+-stimulated ATPase activity was based upon those vesicles expected to express that activity (26% leaky + 33% sealed, inside-out vesicles), the molar stoichiometry of Ca2+ transported:ATP hydrolyzed was 2.12 +/- 0.12. Calmodulin did not increase either Vmax or Ka for free Ca2+ of the uptake system in the vesicles, even when they were treated previously with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The high affinity of this system for Ca2+, specificity for ATP, physiological pH optimum, and stoichiometry of Ca2+ transported:ATP hydrolyzed suggest that it represents an important mechanism by which neutrophils maintain low levels of cytoplasmic free Ca2+.  相似文献   

17.
Characteristics of Ca2+ uptake were studied in a vesicular preparation of proximal tubule plasma membranes from rabbit kidney and compared with the properties of both membrane-bound and solubilized Ca2+-ATPase activities. Calcium uptake required both ATP and MgCl2 and revealed two kinetic components with respect to Ca2+ concentration requirements, one with a high affinity for Ca2+ (1.8 microM), operative in the range of cytosolic Ca2+ activity, and one with a low affinity for Ca2+ (250 microM) which may become active only at abnormally high cytosolic Ca2+ concentrations. The high- and low-affinity components were stimulated to similar extents by phosphate, and required similar concentrations of ATP (0.6 mM) for half-maximal activity. The amount of membrane-bound phosphoenzyme formed from ATP in the presence of Ca2+ was the same regardless of whether only one or both sites were saturated, suggesting that occupancy of the second Ca2+ binding site accelerates the enzyme turnover. Inhibition of Ca2+ transport by Na+ was reversed by the addition of ouabain or an ATP-regenerating system, indicating that this inhibitory effect of Na+ on Ca2+ uptake may be due to the accumulation of ADP in the medium as a result of Na+ pump activity. Low concentrations of carbonyl cyanide p-trifluoromethoxyphenylhydrazone and valinomycin (2.5 and 1 microM, respectively) were without effect on Ca2+ uptake in the presence of phosphate, whereas higher concentrations of the ionophores (200 and 100 microM, respectively) reduced uptake by 60% or more. The calmodulin antagonist 48/80 also reduced Ca2+ uptake with half-maximal effectiveness at 100 micrograms/ml. None of these drugs affected either ATPase activity or the EGTA-induced Ca2+ efflux from preloaded vesicles. The Ca2+ dependence of ATP hydrolysis by the membrane-bound enzyme preparation was similar to that observed for Ca2+ uptake by the vesicles. However, with solubilized enzyme, concentrations of Ca2+ similar to that found in the plasma reduced Ca2+-stimulated ATP hydrolysis to one-half of its maximal rate. This indicates that peritubular Ca2+ may play a role in the regulation of Ca2+ transport across the tubular epithelium. ATP could not be replaced by ITP as a substrate for Ca2+ uptake, and the (Ca2+ + Mg2+)ITPase activity of soluble enzyme was 25-fold lower than in the presence of ATP. This is an indication that the active Ca2+ pumping mechanism in proximal tubules is critically dependent on the nucleoside moiety of the substrate.  相似文献   

18.
Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.  相似文献   

19.
Membrane vesicles isolated from Xenopus laevis full-grown stage VI and mature oocytes accumulate 45Ca in the presence of ATP and oxalate. The Ca2+-pumping activity measured in vitro does not appear to be modified during meiotic maturation; it is not affected by the complex Ca2+-calmodulin. Preliminary experiments have shown that the addition of Na+ (30 mM) rapidly discharges accumulated 45Ca into oocyte vesicles indicating that a Na+/Ca2+ exchange system occurs in this membrane fraction. During progesterone-induced maturation, the different intracellular membranes undergo morphological changes. We suggest that intracellular movement of membrane vesicles could be involved in the local regulation of Ca2+ levels.  相似文献   

20.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号