首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three model peptides have been studied in an effort to understand the molecular basis for the fusogenic potency of foamy virus. These peptides corresponded to a 23 amino acid helical segment close to the amino terminus, a shortened 17 amino acid, more hydrophobic homolog of this peptide, and an 18-amino-acid peptide close to or within the transmembrane domain. The peptides have a conformation containing both alpha-helical and beta-structure in aqueous solution but are predominantly alpha-helical in solutions of trifluoroethanol, as assessed by circular dichroism. In common with other viruses, the most fusogenic peptide was the one closest to the amino terminus. However, unlike several other fusion peptides that have been studied previously, this peptide did not promote increase negative membrane curvature as assessed by effects of the peptide on lipid polymorphism. Nevertheless, the foamy virus fusion peptide promotes membrane fusion, apparently by a mechanism that is independent of changes in membrane curvature. We demonstrate that there is a synergistic action in the promotion of membrane fusion between the peptide from the amino terminal region and the one from the region adjacent to the transmembrane segment.  相似文献   

2.
A novel photoreactive amino acid has been incorporated synthetically into two model peptides and the calmodulin-binding domain from myosin light chain kinase. Cross-linked photoadducts of each peptide with calmodulin have been prepared and digested by chemical and/or enzymatic methods to determine the site of label attachment. Depending on the position of the photoprobe in the peptide sequence, either Met-144 or Met-71 is photolabeled. These results are discussed in relation to the three-dimensional structure of calmodulin obtained crystallographically and the known solution properties of calmodulin.  相似文献   

3.
Peptides corresponding to the amino terminal region of pardaxin from Pardachirus pavoninus (Gly-Phe-Phe-Ala-Leu-Ile-Pro-Lys-Ile-Ile-Ser-Ser-Pro-Leu-Phe) have been synthesized and their interaction with model membranes of phosphatidyl choline and serine studied by 90 degrees C light scattering and fluorescence spectroscopy. The amino terminal 8-residue peptide and the protected 15-residue peptide cause only aggregation of lipid vesicles. The deprotected 15-residue peptide has the ability to cause aggregation and release of entrapped carboxyfluorescein with both phosphatidyl choline and serine lipid vesicles, like pardaxin. The membrane-perturbing ability of the amino terminal 15-residue peptide can be attributed to its ability to adopt an alpha-helical conformation which is amphiphilic in nature in a hydrophobic environment.  相似文献   

4.
The conformational cis-trans equilibrium around the peptide bond in model tripeptides has been determined by 2D NMR methods (HOHAHA, ROESY). The study was limited to three different N-substituted amino acids in position 2, namely Pro (proline), Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), and N-MePhe (N-methylphenylalanine). In all cases the amino acid in position 1 was tyrosine and in position 3, phenylalanine. The results of our studies show that the cis-trans ratio depends mostly on the configuration of the amino acids forming the peptide bond undergoing the cis-trans isomerisation. The amino acid following the sequence (in position 3) does not have much influence on the cis-trans isomerisation, indicating that there is no interaction of the side chains between these amino acids. The model peptides with the L-Tyr-L-AA-(L- or D-)Phe (where AA is N-substituted amino acid) chiralities give 80–100% more of the cis form in comparison to the corresponding peptides with the D-Tyr-L-AA-(L-or D-)Phe chiralities. These results indicate that the incorporation of N-substituted amino acids in small peptides with the same chirality as the precedent amino acid involved in the peptide bond undergoing the cis/trans isomerisation moves the equilibrium to a significant amount of the cis form.  相似文献   

5.
Quantitative analyses of the utilization of amino acids by Lactococcus lactis subsp. cremoris FD1 in yeast extract medium (YE) and in casein peptone medium (CP) have been performed. Both free and peptide-bound amino acids were measured. In the CP most amino acids are peptide-bound and some amino acids are virtually only present in peptides. Thirty-six per cent of all peptide bonds in CP are hydrolysed during fermentation (6·3 mmol peptide bonds per gram biomass formed) and there is a transition of the growth rate related ATP consumption Y xATP (mmol ATP g biomass-1) from 25 mmol g-1 to 71 mmol g-1 coincident with a decrease of the peptide consumption. In YE most of the amino acids are on the free form and only 26% of the peptide bonds are hydrolysed during fermentation (1·5 mmol peptide bonds per gram biomass formed). A constant Y xATP= 38 mmol g-1 prevails throughout the fermentation in YE.  相似文献   

6.
A model peptide, FKCRRWQWRMKKLGA, residues 17-31 of bovine lactoferricin, has been subjected to structure-antibacterial activity relationship studies. The two Trp residues are very important for antibacterial activity, and analogue studies have demonstrated the significance of the size, shape and aromatic character of the side chains. In the current study we have replaced Trp residues in the model peptide with bulky aromatic amino acids to elucidate further the importance of size and shape. The counterproductive Cys residue in position 3 was also replaced by these aromatic amino acids. The largest aromatic amino acids employed resulted in the most active peptides. The peptides containing these hydrophobic residues were generally more active against Staphylococcus aureus than against Escherichia coli, indicating that the bacterial specificity as well as the antibacterial efficiency can be altered by employing large hydrophobic aromatic amino acid residues.  相似文献   

7.
We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established as cyclo(PPFFILLX), where X is a non-proteinaceous amino acid, N-methyl-4-aminoproline. This amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanar cis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysed cis/trans amide-Pro bond isomerisation.  相似文献   

8.
FMRFamide-like peptide (FLP) amino acid sequences have been collected and statistically analyzed. FLP amino acid composition as a function of position in the peptide is graphically presented for several major phyla. Results of total amino acid composition and frequencies of pairs of FLP amino acids have been computed and compared with corresponding values from the entire GenBank protein sequence database. The data for pairwise distributions of amino acids should help in future structure-function studies of FLPs. To aid in future peptide discovery, a computer program and search protocol was developed to identify FLPs from the GenBank protein database without the use of keywords.  相似文献   

9.
Loloatin C is a cyclic cationic antimicrobial peptide which is active against Gram positive as well as certain Gram negative bacteria. Unfortunately, it is equally potent against human erythrocytes. To probe the structure–activity relationship of this promising antibiotic peptide, amino acid substitution and/or incorporation of a constraint sugar amino acid dipeptide isoster has been applied. Six new derivatives have been synthesized using SPPS and their solution structure investigated using NMR studies. Finally, the antimicrobial and the hemolytic activities have been determined.  相似文献   

10.
Dengue virus C protein, essential in the dengue virus life cycle, possesses a segment, peptide PepC, known to bind membranes composed of negatively charged phospholipids. To characterize its interaction with the membrane, we have used the molecular dynamics HMMM membrane model system. This approach is capable of achieving a stable system and sampling the peptide/lipid interactions which determine the orientation and insertion of the peptide upon membrane binding. We have been able to demonstrate spontaneous binding of PepC to the 1,2-divaleryl-sn-glycero-3-phosphate/1,2-divaleryl-sn-glycero-3-phosphocholine membrane model system, whereas no binding was observed at all for the 1,2-divaleryl-sn-glycero-3-phosphocholine one. PepC, adopting an α-helix profile, did not insert into the membrane but did bind to its surface through a charge anchor formed by its three positively charged residues. PepC, maintaining its three-dimensional structure along the whole simulation, presented a nearly parallel orientation with respect to the membrane when bound to it. The positively charged amino acid residues Arg-2, Lys-6, and Arg-16 are mainly responsible for the peptide binding to the membrane stabilizing the structure of the bound peptide. The segment of dengue virus C protein where PepC resides is a fundamental protein–membrane interface which might control protein/membrane interaction, and its positive amino acids are responsible for membrane binding defining its specific location in the bound state. These data should help in our understanding of the molecular mechanism of DENV life cycle as well as making possible the future development of potent inhibitor molecules, which target dengue virus C protein structures involved in membrane binding.  相似文献   

11.
New methodology for identifying and locating crosslinkages in peptides is described. Pepsin is used to cleave insulin and B-chain dimers of insulin into fragments under conditions which retain the original peptide crosslinkages. After partial separation by HPLC, the peptides are analyzed by fast atom bombardment mass spectrometry (FABMS) to determine their molecular weights. The molecular weights of peptide fragments expected from the pepsin digests of human insulin and related model compounds are calculated from the amino acid sequence of the intact peptide. Digestion products are identified by matching their molecular weights, as determined by FABMS, with calculated molecular weights. Locations of interchain crosslinkages are deduced after the peptide fragments have been assigned to specific segments of the parent peptide. The validity of the method has been established by correctly identifying structurally important products in the pepsin digests of model compounds such as human, bovine, and porcine insulins. Procedures developed with the model compounds were used to identify crosslinkages in peptides of unknown structure isolated from an insulin A-chain/B-chain combination reaction mixture. Evidence is presented for formation of three different types of crosslinkages, disulfide, lanthionine, and sulfoxide.  相似文献   

12.
Summary The conformationalcis-trans equilibrium around the peptide bond in model tripeptides has been determined by 2D NMR methods (HOHAHA, ROESY). The study was limited to three different N-substituted amino acids in position 2, namely Pro (proline), Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), and N-MePhe (N-methylphenylalanine). In all cases the amino acid in position 1 was tyrosine and in position 3, phenylalanine. The results of our studies show that thecis-trans ratio depends mostly on the configuration of the amino acids forming the peptide bond undergoing thecis-trans isomerisation. The amino acid following the sequence (in position 3) does not have much influence on thecis-trans isomerisation, indicating that there is no interaction of the side chains between these amino acids. The model peptides with the L-Tyr-L-AA-(L-or D-)Phe (where AA is N-substituted amino acid) chiralities give 80–100% more of thecis form in comparison to the corresponding peptides with the D-Tyr-L-AA-(L-or D-)Phe chiralities. These results indicate that the incorporation of N-substituted amino acids in small peptides with the same chirality as the precedent amino acid involved in the peptide bound undergoing thecis/trans isomerisation moves the equilibrium to a significant amount of thecis form.  相似文献   

13.
Protein glycation is a non-enzymatic reaction between reducing sugars and amino groups that occurs in vivo and has been implicated in a number of disease states and pathologies including Alzheimer's and diabetes. Although glycation is thought to alter protein structure and function, there is currently little information on the structural consequences of this modification. We have used a model alpha-helix and a model beta-hairpin peptide, and NMR analysis, to investigate the effects of glycation upon secondary structure. Glycation of the dilysine motif within the alpha-helix peptide occurred preferentially at one lysine residue and resulted in severe disruption to the local secondary structure. The area immediately around the site of modification was extremely flexible and the peptide did not adopt a preferred conformation in this area of the helix in 30% TFE. Significant glycation of the beta-hairpin peptide was not detected and the structure was unchanged. These results show that glycation results in local secondary structure distortion of alpha-helices and that preferential glycation occurs in a sequence specific manner. The findings will allow us to interrogate the local environment in other peptides/proteins to predict the likelihood of glycation, and to model the potential effects such modification might have upon structure/function.  相似文献   

14.
Glucagon and glucagon-like peptide (GLP) containing 31 amino acids have been isolated from the principal islet of coho salmon (Oncorhynchus kisutch) by gel filtration of acid alcohol extracts followed by HPLC, and the complete amino acid sequence of both peptides has been determined. Salmon glucagon is a simple 29 residue peptide differing at 3 positions when compared to catfish glucagon and at 8 positions when compared to porcine glucagon. Salmon GLP differs at 6 positions when compared with the N-terminal 31 amino acids of the 34 amino acid catfish GLP. Both coho salmon glucagon and GLP cross-react weakly in our mammalian glucagon radioimmunoassay and therefore this technique could not be used to determine tissue content. Glucagon and GLP isolated amounted to 156 micrograms/g and 350 micrograms/g wet tissue, respectively.  相似文献   

15.
Summary We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established ascyclo(PPFFILLX), where X is a non-proteinaceous amino acid,N-methyl-4-aminoproline. this amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanarcis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysedcis/trans amide-Pro bond isomerisation.  相似文献   

16.
Two new statistical models based on Monte Carlo Simulation (MCS) have been developed to score peptide matches in shotgun proteomic data and incorporated in a database search program, MassMatrix (www.massmatrix.net). The first model evaluates peptide matches based on the total abundance of matched peaks in the experimental spectra. The second model evaluates amino acid residue tags within MS/MS spectra. The two models provide complementary scores for peptide matches that result in higher confidence in peptide identification when significant scores are returned from both models. The MCS-based models use a variance reduction technique that improves estimation precision. Due to the high computational expense of MCS-based models, peptide matches were prefiltered by other statistical models before further evaluation by the MCS-based models. Receiver operating characteristic analysis of the data sets confirmed that MCS-based models improved the overall performance of the MassMatrix search software, especially for low-mass accuracy data sets.  相似文献   

17.
Nonenzymatic deamidation rates for 52 glutaminyl and 52 asparaginyl pentapeptides in pH 7.4, 37.0 degrees C. 0.15 m Tris-HCl buffer have been determined by direct injection mass spectrometry. These and the previously reported 306 asparginyl rates have been combined in a self-consistent model for peptide deamidation. This model depends quantitatively upon peptide structure and involves succinimide, glutarimide and hydrolysis mechanisms. The experimental values and suitable interpolated values have been combined to provide deamidation rate values in pH 7.4, 37.0 degrees C. 0.15 m Tris-HCl buffer for the entire set of 648 single-amide permutations of ordinary amino acid residues in GlyXxxAsnYyyGly and GlyXxxGlnYyyGly. Thus, knowledge about sequence-dependent deamidation in peptides is extended to include very long deamidation half-times in the range of 2-50 years.  相似文献   

18.
From skin secretions of the European frog Bombina bombina, a new peptide has been isolated that contains 60 amino acids, including 10 cysteine residues. Its sequence was determined by automated Edman degradation and confirmed by analysis of the cDNA encoding the precursor. A search in the databanks demonstrated that the pattern of cysteine residues in this skin peptide is similar to the ones found in protease inhibitors from Ascaris and in a segment of human von Willebrand factor. The 3D structure of the trypsin inhibitor from Ascaris suum could be used as a template to build a model of the amphibian peptide. In addition, we have demonstrated that this constituent of skin secretion is indeed an inhibitor of trypsin and thrombin, with K(i) values in the range of 0.1 to 1 microM. The new peptide was thus named BSTI for Bombina skin trypsin/thrombin inhibitor.  相似文献   

19.
A model is proposed which indicates that peptides could have been synthesized on RNA templates. L-amino acids are selectively trapped and orientated in clefts in an apparently stable RNA structure attached to a solid phase. Each cleft is bounded by three bases which correspond to the codon for that amino acid. Rotation during a dehydration phase orientates the amino acids so that peptide bond formation can occur by condensation. Rehydration releases the formed peptides.  相似文献   

20.
N-Substituted cyclam–amino acid conjugates have been synthesised both in solution and on the solid phase. The DNA binding affinity of these species has been studied: the nature of the amino acid strongly influences the change in melting temperature suggesting that simple cyclam–peptide conjugates could interact with DNA in a highly selective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号