首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of hepatic glucokinase in the neonatal rat   总被引:1,自引:17,他引:1       下载免费PDF全文
1. Glucokinase and hexokinase activities have been determined in the livers of newborn rats and attempts made to influence in vivo the development of the glucokinase. 2. Glucokinase first appears in rat liver about 16 days after birth and adult activities are reached 10–12 days later. Evidence is presented which indicates that this represents synthesis of new protein. Hexokinase activities remain constant throughout the period of glucokinase development. 3. Both exogenous glucose and insulin are necessary for the natural development of glucokinase, for this is retarded in starved and alloxan-diabetic neonatal rats. 4. The absence of glucokinase during the first 2 weeks of extrauterine life in the rat is not due to lack of insulin. 5. Attempts to advance the time at which glucokinase first appears by infusions of glucose, insulin and chlorpropamide alone and in various combinations have resulted in marginal effects only. 6. When rats are starved for 3 days during the period of glucokinase development and then re-fed, glucokinase is more rapidly synthesized, indicating that the potential ability to synthesize glucokinase continues to develop throughout the period of starvation. 7. Some possible reasons for the comparatively late development of glucokinase are discussed.  相似文献   

2.
1. It was shown that the development of liver glucokinase in the rat coincided with a peak in the levels of circulating thyroid hormone at about the 16th postnatal day. 2. Administration of thyroid inhibitors blocked the development of the enzyme and administration of thyroid hormone restored activity to normal levels. 3. Glucokinase could be induced prematurely as early as the 2nd postnatal day by the administration of thyroid hormone followed by daily injection of glucose (10 mg/g body weight). 4. Glucocorticoids and corticotropin failed to induce glucokinase activity prematurely. 5. The postnatal increase in circulating thyroid hormone levels together with increased intake of carbohydrate at weaning may be the normal physiological stimulus for induction of this enzyme.  相似文献   

3.
1. Feeding a high-glucose diet to weanling rats showed that high hepatic glucokinase activities could be induced at 18 days of age, i.e. 2 days after development of the enzyme begins. 2. The normal development of glucokinase activity can be retarded by weaning rats on to carbohydrate-free, high-fat and high-protein diets. 3. Precocious development of the enzyme before 16 days of age cannot be induced by oral glucose administration. 4. It is concluded that the ability to synthesize glucokinase develops very rapidly and that the nature of the diet determines the normal developmental pattern.  相似文献   

4.
We have developed a rapid, reliable procedure for the purification of rat hepatic glucokinase. The purification utilizes DEAE-cellulose, two affinity chromatography steps, and high-performance liquid chromatography. Glucokinase with a specific activity of 240 units/mg, a 42 K-fold purification, and a yield of 60% is obtained. The enzyme appears as a homogeneous band, with over 99% purity as assessed by polyacrylamide gel electrophoresis. The purification procedure can be completed in 5 days.  相似文献   

5.
We have investigated the effects of triiodothyronine (T3) and thyroxine (T4) on the heparin-stimulated release of hepatic lipase (HL) activity from cultured rat hepatocytes. Addition of T4 (1-10 nmol/l) to the culture medium for 24 h stimulated HL release from cells derived from normal and hypothyroid rats, whereas T3 (0.1-10 nmol/l) was active (at the highest concentration) only in hepatocytes from hypothyroid animals. The effects of T4 could largely be abolished by 5-iodo-2-thiouracil (0.1 mmol/l), an inhibitor of T4-5'-deiodinase. This indicates that the effects of T4 treatment are exerted by T3, formed by deiodination in the hepatocytes.  相似文献   

6.
Expression of rat hepatic glucokinase in Escherichia coli   总被引:1,自引:0,他引:1  
Rat liver glucokinase was expressed in Escherichia coli by using an expression system based on bacteriophage T7 RNA polymerase. The expressed protein starts with the predicted initiator methionine residue and ends at the appropriate carboxyl terminal residue. It was partially purified by ammonium sulfate precipitation and gel filtration and had kinetic and physical properties similar to the purified rat liver enzyme. The efficient expression of this low abundance hepatic protein in bacteria provides a system for in vitro analysis of mutations of the enzyme.  相似文献   

7.
8.
The rate of the hydrolysis of mitochondrial phospholipids isolated from the liver of rats given excess amount of thyroid hormones for a long time was higher than in normal animals. Activation of this process determined by endogenous phospholipase of mitochondria could be also observed in liver mitochondria isolated 2 days after a single injection of L-thyroxine into rats. It is assumed that the hyperthyrosis-induced acceleration of lipid peroxidation in these organelles might be one of the reasons for activation of endogenous phospholipase of mitochondria.  相似文献   

9.
10.
11.
1. The physiological factors that prevent the precocious appearance of glucokinase activity in the 13-day-old rat that can be induced by oral glucose administration were explored. 2. Evidence is presented that the galactose component of milk sugar is inhibitory. In the absence of this inhibitory galactose, the amount of glucose necessary to effect appreciable induction is greater than that present in milk. 3. The induction is prevented both by administration of mannoheptulose, which inhibits insulin release, and by excess insulin; the amount of insulin available therefore seems to be critical. 4. The inhibition of induction by galactose does not appear to be via competition with glucose but by enhancing insulin release and thereby making this excessive. The relative amounts of glucose and insulin appear to be important in regulating glucokinase induction. 5. The precocious induction of glucokinase by glucose is inhibited by simultaneous treatment with approriate amounts of adrenaline, glucagon, dibutyryl cyclic AMP or isoprenaline but not by vasopressin or angiotensin II. 6. No single cause of glucokinase induction in neonatal rat liver can be recognized. The process is subject to regulation by many factors at a time subsequent to when competence to synthesize the enzyme has been established.  相似文献   

12.
In this study, we measured ornithine decarboxylase (ODC) activity as a potential parameter to evaluate the response of the developing rat brain to thyroid hormones. In cerebellum, neonatal hyperthyroidism (40 micrograms thyroxine/100 g body weight daily from birth) increased ODC activity at 2 and 5 days of age and then accelerated its developmental decline. Conversely, ODC activity was decreased in 2- and 5-day-old hypothyroid rats (propylthiouracil to the mother), but it was not significantly different from normal thereafter. No significant differences were observed in the forebrain following either treatment. In hypothyroid rat cerebellum, a single injection of triiodothyronine (T3, 100 micrograms/100 g 18 h before sacrifice) increased significantly ODC activity at all ages. A dose-response study showed that 0.5 micrograms T3/100 g is sufficient to obtain maximal stimulation. Finally, administration of antiserum against rat growth hormone had no significant effect on ODC response to T3. These results show that ODC is a useful marker of thyroid state and tissue response in the neonatal rat cerebellum.  相似文献   

13.
Thyroid hormone status influences calcium metabolism. To elucidate the mechanism of action of thyroid hormones on transcellular transport of calcium in rat intestine, Ca(2+) influx and efflux studies were carried out in brush border membrane vesicles (BBMV) and across the basolateral membrane (BLM) of enterocytes, respectively. Steady-state uptake of Ca(2+) into BBMV as well as Ca(2+) efflux from the BLM enterocytes was significantly increased in hyperthyroid (Hyper-T) rats and decreased in hypothyroid (Hypo-T) rats as compared to euthyroid (Eu-T) rats. Kinetic studies revealed that increase in steady state Ca(2+) uptake into BBMV from hyper-T rats was fraternized with decrease in Michaelis Menten Constant (K(m)), indicating a conformational change in Ca(2+) transporter. Further, this finding was supported by significant changes in transition temperature and membrane fluidity. Increased Ca(2+) efflux across enterocytes was attributed to sodium-dependent Ca(2+) exchange activity which was significantly higher in Hyper-T rats and lower in Hypo-T rats as compared to Eu-T rats. However, there was no change in Ca(2+)-ATPase activity of BLMs of all groups. Kinetic studies of Na(+)/Ca(2+) exchanger revealed that alteration in Na(+)-dependent Ca(2+) efflux was directly associated with maximal velocity (V(max)) of exchanger among all the groups. cAMP, a potent activator of Na(+)/Ca(2+) exchanger, was found to be significantly higher in intestinal mucosa of Hyper-T rats as compared to Eu-T rats. Therefore, the results of this study suggest that Ca(2+) influx across BBM is possibly modulated by thyroid hormones by mediating changes in membrane fluidity. Thyroid hormones activated the Na(+)/Ca(2+) exchange in enterocytes possibly via cAMP-mediated pathway.  相似文献   

14.
15.
The authors present the current knowledge on the intracellular mechanisms of thyroid hormone action in the cardiomyocytes. Many of the clinical manifestations of thyroid diseases are due to the ability of thyroid hormone to alter cardiovascular hemodynamics. Triiodothyronine affects the hemodynamic state mainly by its influence on the expression of cardiomyocyte genes. These genes encode both structural and regulatory proteins in the heart (myosin heavy chains, sarcoplasmic reticulum calcium-activated ATP-ase, phospholamban). The impaired myocardium contractile activity in hypothyreosis reminds findings in heart failure and may warrant further exploration of therapeutic approaches using thyroid hormone to improve cardiac function in heart failure.  相似文献   

16.
Glucokinase (EC 2.7.1.2) first appears in the liver of the rat 2 weeks after birth and increases after weaning on to a high-carbohydrate diet. We investigated the hormonal regulation of glucokinase (GK) mRNA in primary cultures of hepatocytes from 10-12-day-old suckling rats. GK mRNA was undetectable in such cells after 48 h of culture in serum-free medium devoid of hormones. Addition of insulin or tri-iodothyronine (T3) to the medium resulted in induction of GK mRNA. The effects of insulin and T3 were dose-dependent and additive. Dexamethasone alone did not induce GK mRNA, but enhanced the response to insulin and decreased the response to T3. Induction of GK mRNA by insulin was not affected when the medium glucose concentration was varied between 5 and 15 mM, nor when culture was conducted in glucose-free medium supplemented with lactate and pyruvate or galactose. The time course of initial accumulation of GK mRNA in response to insulin was characterized by a lag of 12 h and an induction plateau reached after 36 h. If hepatocytes were then withdrawn from insulin for 24 h and subsequently subjected to a secondary stimulation by insulin, GK mRNA re-accumulated with much faster kinetics and reached the fully induced level within 8 h. Both primary and secondary responses to insulin were abolished by actinomycin D. These results provide insight into the role of hormonal stimuli in the ontogenic development of hepatic glucokinase.  相似文献   

17.
1. The specificity of the effect of glucose on the induction of glucokinase activity that occurs when hepatocytes freshly isolated from 13-day-old rats are incubated in Medium 199 together with insulin [Wakelam & Walker (1980) FEBS Lett. 111, 115-119] was examined. A pattern that is different from other known effects of glucose is found, and metabolism of this compound is not necessarily to account for this particular effect. 2. The effects of a raised glucose concentration and of insulin on the induction can be separated. The hexose initiates the process in the absence of insulin in a manner that is sensitive to actinomycin D but not to cycloheximide. The subsequent effect of insulin is dependent on the prior effect of glucose or other positive analogue, does not require the presence of glucose and is inhibited by cycloheximide but not by actinomycin D. 3. Induction of glucokinase in vitro in hepatocytes from neonatal animals is inhibited by adrenaline, glucagon and dibutyryl cyclic AMP, but not by vasopressin or angiotensin II. The inhibition by cyclic AMP is on the stage requiring insulin and is comparatively specific, because total protein synthesis is not apparently diminished. 4. The implications of these results are discussed with reference to possible mechanisms of induction and to the situation in vivo.  相似文献   

18.
Because of their central role in the regulation of energy-transduction, mitochondria, the major site of oxidative processes within the cell, are considered a likely subcellular target for the action that thyroid hormones exert on energy metabolism. However, the mechanism underlying the regulation of basal metabolic rate (BMR) by thyroid hormones still remains unclear. It has been suggested that these hormones might uncouple substrate oxidation from ATP synthesis, but there are no clear-cut data to support this idea. Two iodothyronines have been identified as effectors of the actions of thyroid hormones on energy metabolism: 3',3,5-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2). Both have significant effects on BMR, but their mechanisms of action are not identical. T3 acts on the nucleus to influence the expression of genes involved in the regulation of cellular metabolism and mitochondria function; 3,5-T2, on the other hand, acts by directly influencing the mitochondrial energy-transduction apparatus. A molecular determinant of the effects of T3 could be uncoupling protein-3 (UCP-3), while the cytochrome-c oxidase complex is a possible target for 3,5-T2. In conclusion, it is likely that iodothyronines regulate energy metabolism by both short-term and long-term mechanisms, and that they act in more than one way in affecting mitochondrial functions.  相似文献   

19.
20.
The present study was undertaken to compare the effects of hypothyroidism and hyperthyroidism on sarcoplasmic reticulum (SR) Ca2+-pump activity, together with assessment of the functional role of SR in providing activator Ca2+ under these altered thyroid states. In response to a shift from hypothyroid to hyperthyroid state, a 10 fold and 2 fold increase in SR Ca2+-pump activity in atria and ventricles, respectively, were observed. This was associated with the 8-9 fold increases in atrial contractility (+dT/dt) and relaxation (-dT/dt), but only with a 3-4 fold increase in their ventricular counterparts. Also, the recirculation fraction of activator Ca2+ (RFA) increased to a far greater extent in atria (4 fold) than in papillary muscles, and the relative increment in inhibition of developed tension by ryanodine became 3 times larger in atria than in papillary muscles. A positive force-frequency relationship (FFR) was observed in hypothyroid atria, whereas the hyperthyroid atria, hypothyroid and hyperthyroid papillary muscles showed a negative FFR. These results suggest the greater role of transsarcolemmal (SL) Ca2+ and smaller role of SR Ca2+ in activating contraction in hypothyroid atria compared to other preparations. Thyroid hormones decrease the contribution of SL and increase that of SR in providing activator Ca2+ to the greater extent in atria than in ventricles. This effect of thyroid hormones is based on larger stimulation of SR Ca2+-pump in atria compared to ventricles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号