首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 Lewis lung carcinoma (LLC-LN7) tumors stimulate myelopoiesis and increase the presence of granulocyte/macrophage (GM) progenitor cells having natural suppressor activity. Treatment of these tumor-bearing mice with interleukin-12 (IL-12) resulted in minimal immune modulation. The objective of this study was to determine whether eliminating natural suppressor activity would allow for immune stimulation by IL-12. Treatment of LLC-LN7 tumor-bearing mice with vitamin D3 eliminated natural suppressor activity. In mice that were first treated with vitamin D3 and then also with IL-12, there was stimulation of splenic T cell proliferation in response to immobilized anti-CD3 plus IL-2. In addition, spleen and lymph node cells from vitamin-D3/IL-12-treated tumor-bearing mice became stimulated in response to autologous tumor to produce interferon γ (IFNγ), although IL-2 production was not stimulated. A prominent effect of the combined vitamin-D3/IL-12 treatment regimen was the synergistic augmentation of autologous tumor-specific cytolytic activity within the regional lymph nodes. The generation of these tumor-specific effector cells required the presence of the tumor mass since such activity was not elicited in the lymph nodes of mice from which the tumors had been surgically excised. The results of this study show that, after treatment of tumor bearers with vitamin D3 to eliminate GM-suppressor cells, IL-12 can induce select regional antitumor immune responses, particularly IFNγ production and cytolysis by regional lymph node cells of autologous tumor. Received: 15 December 1995 / Accepted: 22 March 1996  相似文献   

2.
Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice   总被引:2,自引:0,他引:2  
Both IL-12 and IL-18 have been characterized as effective IFN-gamma-inducing cytokines. Concomitant treatment with IL-12 and IL-18 has been shown to synergistically induce IFN-gamma and may be an effective therapy for treating cancer, allergy, and infectious diseases. To understand the mechanisms underlying the strong induction of IFN-gamma by IL-12/IL-18 in mice, we focused our studies on the IFN-gamma-producing cells in various lymphoid organs and tissues and utilized the intracellular cytokine staining method to detect such cells in situ. After combined treatment with IL-12 and IL-18, IFN-gamma-positive cells in C57BL/6 mice were detected in the liver (12.18%), spleen (0.68%), bone marrow (1.80%), and peritoneum (2.12%), but not in the thymus or lymph nodes (<0.05 and <0.08%, respectively). A two-color staining method revealed that the majority of IFN-gamma-producing cells in the liver were NK1.1(+) cells, while those in the spleen were mostly CD3(+) cells, and to a lesser degree NK1.1(+) cells. Both CD4(+) and CD8(+) cells in the liver and in the spleen produced IFN-gamma. The CD19(+) B cell population was not definitely shown to produce IFN-gamma in our induction experiments. NKT cells, which are a subpopulation of NK1. 1(+) CD3(+) cells, were diminished in the liver and did not seem to contribute to IFN-gamma production arising from IL-12/IL-18 treatment. Further in vitro experiments confirmed the responsiveness of hepatic mononuclear cells to IL-12/IL-18 stimulation. This study is the first to show the IFN-gamma-producing mechanisms of IL-12/IL-18 treatment at the phenotypic level.  相似文献   

3.
The distribution of natural cytotoxic (NC) cells in the gut-associated lymphoid tissues (GALT) and in peripheric lymphoid organs was analyzed in comparison to that of natural killer (NK) cells. It was found that cells from the intestinal epithelium, mesenteric lymph nodes and spleen possess significant levels of NC and NK activity, whereas in thymus and popliteal lymph nodes both the natural activities are negligible. As previously shown for splenocytes, the NC activity of GALT cells is detectable in the 16-hour assays and not in the 4-hour assays. Interestingly, Peyer patches lymphocytes (PPL) possess extremely high NC activity but no NK activity. The NC activity of PPL is still high in NK-deficient mouse strains such as A/J and SJL/J. To further support the observation that the effector PPL are truly NC cells, it was shown that, as previously reported for spleen NC activity, overnight incubation at 37 degrees C of the lymphocytes only marginally affected the cytotoxicity of PPL, which could in turn be augmented by interleukin-3 (IL-3) containing supernatants. On the contrary, IL-2 could not increase NC or NK activity by PPL whilst augmenting NK activity of splenocytes. Thus, for the first time a cell population is identified which expresses only NC activity and not NK and which can be positively regulated only by IL-3.  相似文献   

4.
We have previously shown that suppressor-T-cell (TS) activity in the spleens of autoimmune MRL/Mp-lpr/lpr (MRL/l) mice is increased after 2 months of age. The TS suppress the in vitro primary IgM response to the thymus-dependent (TD) antigen sheep erythrocytes (SRBC) of B and T cells from young congenic MRL/Mp-+/+ (MRL/n) mice which lack the lymphoproliferation (lpr) gene. The TS are nylon wool nonadherent, Thy 1.2 positive, and radiation sensitive. The studies presented here were done to further characterize the TS and to attempt to determine the mechanism of action of these cells. We found that increased TS activity was also present in the proliferating lymph nodes of old MRL/l mice but not in lymph nodes of young MRL/l or MRL/n mice. The splenic TS equally suppressed the primary IgM SRBC response of both young MRL/l and MRL/n B and T cells, indicating that MRL/l SRBC-specific B and T cells are not resistant to suppression. The IgM response of MRL/n B and T cells to the T-independent (TI) antigen trinitrophenyl conjugated to Brucella abortus (TNP-BA) was not suppressed by the TS, although the IgM response to TNP was suppressed when TNP was coupled to the TD carrier SRBC. The results of kinetics studies of TS expression showed that when the TS were added on Day 0 of culture the SRBC response was suppressed as early as Day 2 of culture; however, when the TS were added on Days 1, 2, or 3 of culture, the suppression was reduced. The TS suppressed the in vitro memory IgG response of spleen cells from MRL/n mice which had been primed with SRBC; the memory IgG responses of spleen cells from MRL/l mice were variably suppressed. Taken together, these results suggest that the TS suppress TH function in early events of antibody production and that some activated B or T cells may be resistant to the effects of the TS. Increased TS activity was not present in the spleens of aged New Zealand Black X NZ White (NZB/W) F1 mice. Possible reasons for the presence of increased TS activity in MRL/l mice and its relation to autoimmune disease is discussed.  相似文献   

5.
Natural killer cells are important cytolytic cells in innate immunity. We have characterized human NK cells of spleen, lymph nodes, and tonsils. More than 95% of peripheral blood and 85% of spleen NK cells are CD56(dim)CD16(+) and express perforin, the natural cytotoxicity receptors (NCRs) NKp30 and NKp46, as well as in part killer cell Ig-like receptors (KIRs). In contrast, NK cells in lymph nodes have mainly a CD56(bright)CD16(-) phenotype and lack perforin. In addition, they lack KIRs and all NCR expression, except low levels of NKp46. The NK cells of tonsils also lack perforin, KIRs, NKp30, and CD16, but partially express NKp44 and NKp46. Upon IL-2 stimulation, however, lymph node and tonsilar NK cells up-regulate NCRs, express perforin, and acquire cytolytic activity for NK-sensitive target cells. In addition, they express CD16 and KIRs upon IL-2 activation, and therefore display a phenotype similar to peripheral blood NK cells. We hypothesize that IL-2 can mobilize the NK cells of secondary lymphoid tissues to mediate natural killing during immune responses. Because lymph nodes harbor 40% and peripheral blood only 2% of all lymphocytes in humans, this newly characterized perforin(-) NK cell compartment in lymph nodes and related tissues probably outnumbers perforin(+) NK cells. These results also suggest secondary lymphoid organs as a possible site of NK cell differentiation and self-tolerance acquisition.  相似文献   

6.
Interleukin-18 (IL-18) is a proinflammatory cytokine that promotes natural killer (NK) and T-cell activation. Several poxviruses, including vaccinia virus (VV), encode a soluble IL-18-binding protein (IL-18bp). The role of the VV IL-18bp (gene C12L) in vivo was studied with wild-type (vC12L), deletion mutant (vDeltaC12L), and revertant (vC12L-rev) viruses in a murine intranasal model of infection. The data show that vDeltaC12L was markedly attenuated, characterized by a mild weight loss and reduced virus titers in lungs, brain, and spleen. Three days after infection, NK cytotoxic activity was augmented in the lung, spleen, and mediastinal lymph nodes (MLNs) of vDeltaC12L-infected mice compared to controls. Seven days after infection, vDeltaC12L-infected mice displayed heightened VV-specific cytotoxic T-lymphocyte (CTL) responses in the lungs, spleen, and MLNs. Gamma interferon (IFN-gamma) levels were also dramatically elevated in lavage fluids and cells from lungs of mice infected with vDeltaC12L. Finally, we demonstrate that IL-18 is produced in vitro and in vivo after VV infection. Taken together, these data demonstrate a role for the vIL-18bp in counteracting IL-18 in both the innate and the specific immune response to VV infection and indicate that the ability of IL-18 to promote vigorous T-cell responses (cytotoxic activity and IFN-gamma production) is a critical factor in the accelerated clearance of the vDeltaC12L mutant.  相似文献   

7.
It has been shown that normal mouse serum contains a tumor growth-inhibitory factor (GIF). and that strain-dependent levels of GIF correlate with mouse NK activity. To further analyze the genetic control of GIF we have studied the growth-inhibitory activity of normal mouse serum from 8 different mouse strains and their F1 hybrids. A sensitive method using a chromogenic substrate for an endogenous lysosomal enzyme was used to measure the inhibitory activity of normal mouse serum on the mouse B16 melanoma. The highest level of GIF was found in old mice, lower activity in serum of young animals and no activity in suckling mice. To compare the genetic control of GIF and NK, spleen NK activity against B16 as well as YAC-1 targets was measured in parallel in the same animals. Confirming previous results we found the H-2k strains CBA and C3H to have high levels of GIF as well as NK activity, while the strain A/Sn and the A congenic strain A.SW had low levels of both activities. Experiments with H-2d and H-2b strains, however, showed that GIF and NK had a different genetic control; thus the DBA/2 and Balb/c strains had considerably higher GIF activity than the C57B1 and Leaden strains, while the reverse was true for NK activity. In F1 hybrid crosses between strains with high and low activity, high activity was inherited as a dominant trait for both GIF and NK. A backcross analysis in (A X CBA) X A backcross mice, segregating for NK and GIF showed that the two activities did not cosegregate. These studies therefore demonstrate that GIF and NK activity are under different genetic control, and do not support any direct or simple relationship between GIF and NK cells.  相似文献   

8.
Mice deficient in lymphotoxin (LT)-alpha lack peripheral lymph nodes and Peyer's patches and have profound defects in development of follicular dendritic cell networks, germinal center formation, and T/B cell segregation in the spleen. Although LTalpha is known to be expressed by NK cells as well as T and B lymphocytes, the requirement of LTalpha for NK cell functions is largely unknown. To address this issue, we have assessed NK cell functions in LTalpha-deficient mice by evaluating tumor models with known requirements for NK cells to control their growth and metastasis. Syngeneic B16F10 melanoma cells inoculated s.c. grew more rapidly in LTalpha-/- mice than in the wild-type littermates, and the formation of experimental pulmonary metastases was significantly enhanced in LTalpha-/- mice. Although LTalpha-/- mice exhibited almost a normal total number of NK cells in spleen, they showed an impaired recruitment of NK cells to lung and liver. Additionally, lytic NK cells were not efficiently produced from LTalpha-/- bone marrow cells in vitro in the presence of IL-2 and IL-15. These data suggest that LTalpha signaling may be involved in the maturation and recruitment of NK cells and may play an important role in antitumor surveillance.  相似文献   

9.
The mechanisms of cyclophosphamide (CP)-induced tolerance were investigated by comparing with those of neonatally induced tolerance. When C3H/He Slc (C3H; H-2k, Mls-1b) mice were given i.v. either AKR/J Sea (AKR; H-2k, Mls-1a) or (AKR x C3H)F1 (AKC3F1; H-2k, Mls-1a/b) spleen cells and treated i.p. with CP 2 days later, a long-lasting skin allograft tolerance to AKR was induced in each case without any signs of graft-vs-host disease (GVHD). However, typical signs of GVHD were observed in the C3H mice neonatally tolerized with AKR spleen cells, but not in those tolerized with AKC3F1 spleen cells. The expression of TCR V beta 6, which is strongly correlated with the reactivity to Mls-1a Ag (of donor AKR origin), in the periphery was quite different between the two types of tolerant C3H mice. Namely, in the lymph nodes of the C3H mice tolerized with AKR spleen cells and CP, only CD4(+)-V beta 6+, but not CD8(+)-V beta 6+, T cells selectively disappeared, whereas both of them were abrogated in the lymph nodes of the C3H mice neonatally tolerized of AKR. By contrast, in the thymus of the two types of tolerant C3H mice, both CD4+CD8- and CD4-CD8+ single-positive thymocytes expressing TCR V beta 6 were clonally deleted, suggesting that the thymic involvement was the same in each type of tolerance. These results suggest that the preferential disappearance of the CD4(+)-V beta 6+ T cells (of host origin) and the effector T cells of GVHD (of donor origin) occurred only in the periphery of the C3H mice tolerized with AKR spleen cells plus CP and was attributable to the destruction of Ag-stimulated T cells by the CP treatment. In contrast, the intrathymic clonal deletion of immature V beta 6+ T cells was a common mechanism for both of the tolerance induction systems.  相似文献   

10.
Several murine strains with spontaneously occurring systemic lupus erythematosus-like disease demonstrate defects in immunoregulation. The MRL/MpJ-lpr/lpr (MRL-1) strain develops a severe age-progressive defect in interleukin 2 (IL 2) production in response to mitogen or antigen. In this study, we demonstrate in vitro the presence of suppressor cells in the lymph nodes of naive mice of the MRL background. Suppression by MRL-1 lymph node cells was partially reversed by treatment with anti-Lyt-1.2 monoclonal antibody and complement and was moderately radiosensitive. Suppression by lymph node cells from the congenic MRL/MpJ-+/+ (MRL-+) mouse was somewhat more resistant to treatment with anti-Lyt-1.2 and complement, or radiation. Lymph node cells from the H-2-syngeneic mouse strain, C3H/HeJ, failed to suppress. Thus, lymph nodes from mice of the MRL background contain cells capable of suppressing in vitro IL 2 responses. We next performed cell transfers to determine whether suppressor cells contribute in vivo to the IL 2 defect. Lymph node cells, but not spleen cells, from MRL-1 mice by 5 to 6 mo of age suppressed antigen-specific IL 2, CTL, and DTH responses when transferred into young MRL-+ recipients. Transfer of identical numbers of lymph node cells from age-matched MRL-+ mice failed to suppress IL 2 production. Transfer of suppression was sensitive to treatment with monoclonal anti-Lyt-2.1 and complement, and to 250 rad of radiation. Thus, this study suggests a role for active suppression of IL 2 production in the establishment of the IL 2 defect in the MRL-1 mouse. Further, suppression may involve phenotypically distinct T lymphocyte subpopulations.  相似文献   

11.
We have been examining the mechanisms that control in vivo development and down regulation of cytolytic T lymphocytes (CTL) to trinitrophenyl (TNP)-altered self antigens. In vivo generation of hapten-specific CTL requires an auxiliary antigenic stimulus, which can be provided by H-2 compatible but Mls-disparate cells. These experiments were designed to study the effect of tolerization with such Mls-disparate cells on CTL development. C3H/HeN (H-2k, Mlsc ) mice sensitized in the footpads with C3H-TNP spleen cells plus CBA/J (H-2k, Mlsd ) spleen cells develop CTL in the draining lymph nodes that will lyse 51Cr-labeled TNP-modified C3H targets. However, we have found that if C3H/HeN mice are given tolerizing doses of CBA/J spleen cells 5 to 7 days before sensitization, a splenic suppressor T cell (Ts) appears. This Ts will suppress CTL development in its tolerant host, and can be transferred adoptively to function in naive mice. Ts and its precursor are cyclophosphamide insensitive and therefore different from the naturally existing suppressor cell present in mice. When triggered by cells with Mlsd , the Ts produces a factor (TsF) that hinders helper factors from functioning in an in vitro CTL assay. Furthermore, TsF acts to prevent utilization of IL 2 by an IL 2-dependent cell line. Thus, evidence has been provided that the in vivo generation of CTL toward hapten-altered self can be down regulated at the level of helper signals by a Ts. The latter is inducible by the Mls-disparate cells that are needed at a different site to trigger the helper factors in this CTL system.  相似文献   

12.
Susceptibility and development of Th2 cells in BALB/c mice infected with Leishmania major result from early IL-4 production by Vbeta4Valpha8 CD4+ T cells in response to the Leishmania homolog of mammalian RACK1 Ag. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. We further showed that transfer of 10(7) BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10(7) control BALB/c spleen cells were resistant to infection with L. major and developed a Th1 response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.  相似文献   

13.
The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2(k), we generated double congenic mice between MA/My and BALB.K mice and an F(2) cross between FVB/N (H-2(q)) and BALB.K (H2(k)) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2(k) in conjunction with Cmv3(MA/My) or Cmv3(FVB) were resistant to MCMV infection. Subsequently, an F(3) cross was carried out between transgenic FVB/H2-D(k) and MHC-I deficient mice in which only the progeny expressing Cmv3(FVB) and a single H2-D(k) class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell-dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2(q) alleles influence the expression level of H2(q) molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2(q) alleles. Our results support a model in which H-2(q) molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-D(k) on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell-mediated control of viral load.  相似文献   

14.
The present study was designed to measure by quantitative and kinetic methods the production and renewal of natural killer (NK) cells in congenitally B-lymphocyte-deficient (CBA/N) mice. The total NK activity (percent specific lysis corrected for changes in whole organ cellularity) of the bone marrow and spleen of immunologically normal (CBA/CaJ) and CBA/N mice was assayed prior to and immediately after 48 h treatment (2 X/day, i.p.) with the cell cycle poison hydroxyurea (HU) and at various intervals throughout the subsequent post-HU recovery period. The total NK activity (TNKA) of untreated CBA/N bone marrow was 154% of that of CBA/CaJ bone marrow while the TNKA of CBA/N spleen was not significantly different (112%) from that of CBA/CaJ spleen. At the conclusion of 48 h HU, bone marrow TNKA of CBA/N and CBA/CaJ mice fell to 60 and 49%, respectively, of their saline-injected (2 X/day, i.p.) control levels, while spleen TNKA fell to 42 and 61%, respectively, of their saline-injected control levels. In the bone marrow, NK cell depletion in response to HU was more rapid in CBA/N mice (day 0.5 after HU) than in CBA/CaJ mice (day 2 after HU). TNKA of the spleen also decreased more rapidly in CBA/N mice (day 2 after HU) than in CBA/CaJ mice (day 3 after HU). The data indicate an enhanced production and turnover of NK cells in CBA/N mice relative to CBA/CaJ mice. Moreover, increased production and renewal of NK cells in CBA/N mice together with virtually unchanged levels of NK activity (112% of CBA/CaJ mice) in CBA/N mouse spleens indicate that mature lytic NK cells in CBA/N spleen but not bone marrow have a significantly shorter post-mitotic life span than do NK cells in the spleens of immunologically normal (CBA/CaJ) mice.  相似文献   

15.
Many immune down-regulatory molecules have been isolated from parasites, including cystatin (cystain protease inhibitor). In a previous study, we isolated and characterized Type I cystatin (CsStefin-1) of the liver fluke, Clonorchis sinensis. To investigate whether the CsStefin-1 might be a new host immune modulator, we induced intestinal inflammation in mice by dextran sodium sulfate (DSS) and treated them with recombinant CsStefin-1 (rCsStefin-1). The disease activity index (DAI) increased in DSS only-treated mice. In contrast, the DAI value was significantly reduced in rCsStefin-1-treated mice than DSS only-treated mice. In addition, the colon length of DSS only-treated mice was shorter than that of rCsStefin-1 treated mice. The secretion levels of IFN-γ and TNF-α in the spleen and mesenteric lymph nodes (MLNs) were significantly increased by DSS treatment, but the level of TNF-α in MLNs was significantly decreased by rCsStefin-1 treatment. IL-10 production in both spleen and MLNs was significantly increased, and IL-10(+)F4/80(+) macrophage cells were significantly increased in the spleen and MLNs of rCsStefin-1 treated mice after DSS treatment. In conclusion, rCsStefin-1 could reduce the intestinal inflammation occurring after DSS treatment, these effects might be related with recruitment of IL-10 secreting macrophages.  相似文献   

16.
Immunosuppression induced by attenuated Salmonella. Reversal by IL-4   总被引:6,自引:0,他引:6  
We previously demonstrated that an aroA- strain of Salmonella typhimurium, which provides excellent protection against virulent Salmonella challenge, also rendered immunized mice unable to mount in vivo and in vitro antibody responses to heterologous Ag. Coculture studies using transwell plates indicated that suppression was mediated by soluble factors. The suppressive cells were identified as belonging to the monocytic linkage. Macrophage precursors as well as mature adherent macrophages mediated the observed suppression. In the present study, the mechanism of immunosuppression was investigated. Suppression was found to be genetically nonrestricted as spleen cells from immunized C3HeB/FeJ mice (H-2k) suppressed the anti-SRBC plaque-forming cell (PFC) responses of normal spleen cells from two MHC noncompatible mouse strains, BALB/c (H-2d) and C57BL/6 (H-2b). Time course experiments demonstrated that the addition of spleen cells from immunized mice to normal splenocytes as late as day 4 of a 5-day assay was still markedly suppressive. Furthermore, suppression of the PFC responses was accompanied by a profound inhibition of the capacity of immune splenocytes to produce IL-2 in response to in vitro stimulation by Con A. Coculture studies showed that immune spleen cells were able to suppress IL-2 production by normal splenocytes in a dose-dependent fashion. However, the suppressed PFC responses of immune spleen cells could not be reversed by the exogenous addition of up to 200 U/ml of IL-2, suggesting that immune splenocytes are also defective in their ability to respond to IL-2. In marked contrast, suppression of PFC responses was reduced by more than 50% by the addition of as little as 1 U/ml of IL-4 and was completely abrogated when 5 U/ml of IL-4 were added to in vitro cultures of spleen cells from immunized mice. The antisuppressive action of IL-4 appeared to be via its inhibitory effect on activated macrophages. The implications of the above findings are discussed.  相似文献   

17.
Memory CD8+ T cells provide an early source of IFN-gamma   总被引:7,自引:0,他引:7  
During the non-Ag-specific early phase of infection, IFN-gamma is believed to be primarily provided by NK and NKT cells in response to pathogen-derived inflammatory mediators. To test whether other cell types were involved in early IFN-gamma release, IFN-gamma-producing cells were visualized in spleens and lymph nodes of LPS-injected mice. In addition to NK and NKT cells, IFN-gamma was also detected in a significant fraction of CD8(+) T cells. CD8(+) T cells represented the second major population of IFN-gamma-producing cells in the spleen ( approximately 30%) and the majority of IFN-gamma(+) cells in the lymph nodes ( approximately 70%). LPS-induced IFN-gamma production by CD8(+) T cells was MHC class I independent and was restricted to CD44(high) (memory phenotype) cells. Experiments performed with C3H/HeJ (LPS-nonresponder) mice suggested that CD8(+) T cells responded to LPS indirectly through macrophage/dendritic cell-derived IFN-alpha/beta, IL-12, and IL-18. IFN-gamma was also detected in memory CD8(+) T cells from mice injected with type I IFN or with poly(I:C), a synthetic dsRNA that mimics early activation by RNA viruses. Taken together, these results suggest that in response to bacterial and viral products, memory T cells may contribute to innate immunity by providing an early non-Ag-specific source of IFN-gamma.  相似文献   

18.
To verify or to challenge the reports indicating that IL-2 was the only molecule involved in the reconstitution of nu/nu mice alloreactivity in vitro, Balb/c (H-2d) nu/nu spleen cells were primed in culture against C57/B16 (H-2b) in the presence of crude IL-2-containing supernatants or purified IL-2. The generation of cytotoxic effectors was evaluated against a panel of 51Cr-labeled target cells. Although crude IL-2-containing supernatants sustained the generation of cytotoxic effectors, purified "natural" IL-2 (from different origins) and recombinant IL-2 were not able to do so. Con A or PHA were identified as cofactors synergizing with IL-2 to induce effectors from nu/nu spleen cells. These effectors efficiently lysed EL4 (H-2b, tumor line), but not mitogen-induced blast cells from the same strain. They also lysed targets bearing irrelevant allogenic H-2 specificities. Cold competition experiments confirmed the lack of H-2 specificity of such effectors: lysis of EL4 cells (H-2b) was inhibited strongly by YAC-1 cells (H-2a, very sensitive to NK lysis) or P815 cells (H-2d, autologous to the nu/nu effectors). Our results clearly challenge earlier conclusions and indicate that IL-2 alone does not reconstitute nude mice alloreactivity. Crude supernatants containing IL-2 and mitogen induce nonspecific effectors with patterns of reactivity similar to those of activated natural killers. We think that the cytotoxicity observed in these conditions in nude mice results from the mitogenic triggering of some kind of prethymic killer cells which subsequently are expanded by IL-2.  相似文献   

19.
Pulmonary Cryptococcus neoformans infection of C57BL/6 mice is an established model of an allergic bronchopulmonary mycosis that has also been used to test a number of immunomodulatory agents. Our objective was to determine the role of IL-4 and IL-10 in the development/manifestation of the T2 response to C. neoformans in the lungs and lung-associated lymph nodes. In contrast to wild-type (WT) mice, which develop a chronic infection, pulmonary clearance was significantly greater in IL-4 knockout (KO) and IL-10 KO mice but was not due to an up-regulation of a non-T cell effector mechanism. Pulmonary eosinophilia was absent in both IL-4 KO and IL-10 KO mice compared with WT mice. The production of IL-4, IL-5, and IL-13 by lung leukocytes from IL-4 KO and IL-10 KO mice was lower but IFN-gamma levels remained the same. TNF-alpha and IL-12 production by lung leukocytes was up-regulated in IL-10 KO but not IL-4 KO mice. Overall, IL-4 KO mice did not develop the systemic (lung-associated lymph nodes and serum) or local (lungs) T2 responses characteristic of the allergic bronchopulmonary C. neoformans infection. In contrast, the systemic T2 elements of the response remained unaltered in IL-10 KO mice whereas the T2 response in the lungs failed to develop indicating that the action of IL-10 in T cell regulation was distinct from that of IL-4. Thus, although IL-10 has been reported to down-regulate pulmonary T2 responses to isolated fungal Ags, IL-10 can augment pulmonary T2 responses if they occur in the context of fungal infection.  相似文献   

20.
We investigated the heterogeneity of the humoral immune responses to whole cells and lipopolysaccharide (LPS) of Actinobacillus actinomycetemcomitans serotype b and production of cytokines in inbred strains of mice. Nine such strains were tested: A/J (H-2(a)), C57BL/6 (H-2(b)), BALB/c (H-2(d)), DBA/2 (H-2(d)), B10.BR (H-2(k)), C3H/He (H-2(k)), C3H/HeJ (H-2(k)), DBA/1 (H-2(q)) and B10.S (H-2(s)). Mice were immunized intraperitoneally with whole cells of A. actinomycetemcomitans ATCC 43718 (serotype b) in phosphate buffered saline (PBS; pH 7.2) emulsified with an equal volume of Freund's incomplete adjuvant. Serum immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM) levels against A. actinomycetemcomitans were measured by an ELISA system. ELISA analysis, using LPS fractions from serotype a, b or c strains of A. actinomycetemcomitans as the coating antigens, revealed that mice strains C3H/He, C3H/HeJ, B10.BR and B10.S had an extremely high-IgM response against serotype b LPS. High-IgM titer sera contain also elevated levels of IgA antibodies to the antigen. To compare the cytokine production among inbred mice, the amounts of interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-6 (IL-6) released from mouse splenocytes were measured using ELISA systems specific for these cytokines. A. actinomycetemcomitans serotype b LPS stimulation induced IL-6 release from murine splenocytes of all tested strains. However, IL-4 and IL-5 were detected only in high-IgM/IgA responders to A. actinomycetemcomitans serotype b LPS, not in low-IgM/IgA responders. Thus, we found a relationship between the humoral immune response to LPS of A. actinomycetemcomitans serotype b and production of type 2 cytokines by splenocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号