首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

2.
Several mesenchymally derived cells, including osteoblasts, secrete hepatocyte growth factor (HGF). 1alpha,25(OH)(2)-vitamin D(3) [1,25(OH)(2)D(3)] inhibits proliferation and induces differentiation of MG-63 osteoblastic cells. Here we show that MG-63 cells secrete copious amounts of HGF and that 1,25(OH)(2)D(3) inhibits HGF production. MG-63 cells also express HGF receptor (c-Met) mRNA, suggesting an autocrine action of HGF. Indeed, although exogenous HGF failed to stimulate cellular proliferation, neutralizing endogenous HGF with a neutralizing antibody inhibited MG-63 cell proliferation; moreover, inhibiting HGF synthesis with 1,25(OH)(2)D(3) followed by addition of HGF rescued hormone-induced inhibition of proliferation. Nonneutralized cells displayed constitutive phosphorylation of c-Met and the mitogen-activated protein kinases mitogen/extracellular signal-regulated kinase (MEK) 1 and extracellular signal-regulated kinase (Erk) 1/2, which were inhibited by anti-HGF antibody. Constitutive phosphorylation of Erk1/2 was also abolished by 1,25(OH)(2)D(3). Addition of HGF to MG-63 cells treated with neutralizing HGF antibody induced rapid phosphorylation of c-Met, MEK1, and Erk1/2. Thus endogenous HGF induces a constitutively active, autocrine mitogenic loop in MG-63 cells. The known antiproliferative effect of 1,25(OH)(2)D(3) on MG-63 cells can be accounted for by the concomitant 1,25(OH)(2)D(3)-induced inhibition of HGF production.  相似文献   

3.
Using MG-63 cells as a model system capable of partial osteoblastic differentiation, we have examined the effect of growth on extracellular matrix. MG-63 cell matrix and purified type I collagen induced a morphological change characterized by long cytoplasmic processes reminiscent of those seen in osteocytes. Concurrent biochemical changes involving bone marker proteins included increased specific activity of cell-associated alkaline phosphatase and increased secretion of osteonectin (up to 2.5-fold for each protein); all changes occurred without alterations in the growth kinetics of the MG-63 cells. The increase in alkaline phosphatase activity was maximal on days 6-8 following seeding; increased osteonectin secretion was most prominent immediately following seeding; all changes decreased as cells reached confluence. Growing cells on type I collagen resulted in an increased induction of alkaline phosphatase activity by 1,25(OH)2D3 (with little change in the 1,25(OH)2D3 induction of osteonectin and osteocalcin secretion), and increased TGF-beta induction of alkaline phosphatase activity as well (both TGF-beta 1 and TGF-beta 2). Both the 1,25(OH)2D3 and TGF-beta effects appeared to be synergistic with growth on type I collagen. These studies support the hypothesis that bone extracellular matrix may play an important role in osteoblastic differentiation and phenotypic expression.  相似文献   

4.
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.  相似文献   

5.
Transforming growth factor beta (TGF beta) and 1,25-dihydroxyvitamin D3 (1,25D3), when added simultaneously to a human osteosarcoma cell line, MG-63, induce alkaline phosphatase activity 40-70-fold over basal levels, 6-7-fold over 1,25D3 treatment alone, and 15-20-fold over TGF beta treatment alone. TGF beta and 1,25D3 synergistically increased alkaline phosphatase specific activity in both matrix vesicles and plasma membrane isolated from the cultures, but the specific activity was greater in and targeted to the matrix vesicle fraction. Inhibitor and cleavage studies proved that the enzymatic activity was liver/bone/kidney alkaline phosphatase. Preincubation of MG-63 cells with TGF beta for 30 min before addition of 1,25D3 was sufficient for maximal induction of enzyme activity. Messenger RNA for liver/bone/kidney alkaline phosphatase was increased 2.1-fold with TGF beta, 1.7-fold with 1,25D3, and 4.8-fold with the combination at 72 h. Human alkaline phosphatase protein as detected by radioimmunoassay was stimulated only 6.3-fold over control levels with the combination. This combination of factors was tested for their effect on production of three other osteoblast cell proteins: collagen type I, osteocalcin, and fibronectin. TGF beta inhibited 1,25D3-induced osteocalcin production, whereas both factors were additive for fibronectin and collagen type I production. TGF beta appears to modulate the differentiation effects of 1,25D3 on this human osteoblast-like cell and thereby retain the cell in a non-fully differentiated state.  相似文献   

6.
Effect of 1,25(OH)2D3 on bone morphogenetic protein-3 mRNA expression   总被引:1,自引:0,他引:1  
Bone morphogenetic proteins (BMPs) are members to the transforming growth factor-beta superfamily. They induce ectopic bone formation in rat and are pleiotropic initiators of inducible osteogenic precursor cells. A lot of reports have studied the presence of BMPs and their effects on bone marker expression in many different cell lines, however none describe the regulation of BMP3 by different factors and expression conditions. When a human bone marrow stromal cell (HBMSC) culture was treated simultaneously with 1,25(OH)2D3 (10(-8) M) and BMP3 (2.5 ng/ml), the total osteocalcin content in the cell layer and in the culture medium was higher than when the culture was treated with either factor alone (162%). To elucidate this synergistic activity, Northern blot analysis was done to study the effect of 1,25(OH)2D3 on BMP3 mRNA expression. Several human cell lines (MNNG, U-2OS, MG-63, KHOS, TE85, HOS) and HBMSC were treated by 1,25(OH)2D3 (10(-8) M for 24 h). Purified mRNA from treated and untreated cells were denatured using glyoxal and dimethylsulfoxide, and were fractionated on a 1% agarose gel. After electrophoresis, RNA were blotted onto a nylon membrane and incubated with 32P-labeled BMP3 and GAPDH riboprobes. Northern blot analysis revealed that, the BMP3 mRNA level was increased in a few cell lines (MG-63, HBMSC, HOS) after the addition of 1,25(OH)2D3 when compared to the untreated cells (127%+/-1; 130.5%+/-19.5; 207%+/-14). An higher stimulation was observed in HBMSC primary culture when compared to differentiated HBMSC. In view of these results, we now investigate the following hypothesis: does the BMP3 promoter exhibit the vitamin D receptor response like the osteocalcin gene?  相似文献   

7.
The synthesis of osteocalcin, the major non-collagenous protein of adult bone, was examined in cultures of 21-day fetal rat calvariae. Osteocalcin was measured by a sensitive and specific radioimmunoassay. Osteocalcin concentration in unincubated calvariae was 14.5 +/- 0.5 ng/calvaria. After incubation, there was a continuous increase in bone and medium osteocalcin, and by 96 h the values were about 100% higher than in unincubated calvariae. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) at 10(-11) to 10(-8)M increased osteocalcin synthesis. The effect appeared as early as 6 h after treatment and was primarily observed in the culture medium, and 1,25-(OH)2D3 stimulated osteocalcin up to 9-fold by 96 h. Concomitant with the effect on osteocalcin synthesis, 1,25-(OH)2D3 inhibited collagen synthesis. Cycloheximide markedly decreased osteocalcin concentrations in control and 1,25-(OH)2D3-treated calvariae. The stimulatory effect on osteocalcin synthesis was specific to 1,25-(OH)2D3 since 24,25-dihydroxyvitamin D3, parathyroid hormone, epidermal growth factor, and prostaglandin E2 did not stimulate osteocalcin synthesis, and parathyroid hormone and epidermal growth factor opposed the 1,25-(OH)2D3 stimulatory effect. Insulin did not alter osteocalcin concentration by itself but enhanced the effect of 1,25-(OH)2D3. In conclusion, 1,25-(OH)2D3 stimulates osteocalcin synthesis in cultures of normal calvariae, but this effect is not shared by other hormones known to affect bone metabolism.  相似文献   

8.
1,25-Dihydroxyvitamin D3 (1,25D) is involved in the regulation of proliferation and differentiation of a variety of cell types including cancer cells. In recent years, numerous new vitamin D3 analogs have been developed in order to obtain favorable therapeutic properties. The effects of a new 20-epi analog, CB1093 (20-epi-22-ethoxy-23-yne-24a,26a,27a-trihomo-1α,25(OH)2D3), on the proliferation and differentiation of human MG-63 osteosarcoma cell line were compared here with those of the parent compound 1,25D. Proliferation of the MG-63 cells was inhibited similarly by 22%, 50% and 59% after treatment with 0.1 μM 1,25D or CB1093 for 48 h, 96 h, and 144 h, respectively. In transfection experiments, the compounds were equipotent in stimulating reporter gene activity under the control of human osteocalcin gene promoter. In cell culture experiments, however, CB1093 was more potent than 1,25D at low concentrations and more effective for a longer period of time in activating the osteocalcin gene expression at mRNA and protein levels. Also, a 6-h pretreatment and subsequent culture for up to 120 h without 1,25D or CB1093 yielded higher osteocalcin mRNA and protein levels with analog-treated cells than with 1,25D-treated cells. The electrophoretic mobility shift assay (EMSA) revealed stronger VDR-VDRE binding with analog-treated MG-63 cells than with 1,25D-treated cells. The differences in the DNA binding of 1,25D-bound vs. analog-bound VDR, however, largely disappeared when the binding reactions were performed with recombinant hVDR and hRXRβ proteins. These results demonstrate that the new analog CB1093 was equally or even more effective than 1,25D in regulating all human osteosarcoma cell functions ranging from growth inhibition to marker gene expression and that the differences in effectivity most probably resulted from interactions of the hVDR:hRXRβ-complex with additional nuclear proteins. J. Cell. Biochem. 70:414–424, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
1,25(OH)2 Vitamin D3 (1,25(OH)2D3) and adhesion propagate monocyte differentiation. We identified the selenoprotein thioredoxin reductase (TrxR) as a new molecular target for 1,25(OH)2D3 in monocytes during this process. In THP1 monocytic leukemia cells 1,25(OH)2D3 stimulated TrxR mRNA levels 2-4-fold by 4-8 h and enhanced TrxR activity (60%) (as measured by the dithionitrobenzole-assay) after 24 h, which declined below baseline after 96 h. The addition of 100 nM selenite enhanced (approx. 50%) basal and stimulated enzyme activity in THP1 cells. The relative stimulation by 1,25(OH)2D3 was very similar but peak levels were sustained in THP1 cells up to 48 h. Human peripheral blood monocytes (PBM) of different donors showed very low basal TrxR steady state mRNA levels which were markedly enhanced (as analyzed by Northern blotting) after 4 h of adherence to culture dishes. 1,25(OH)2D3 (100 nM) further stimulated TrxR mRNA expression (4 h, 3-fold). TrxR enzyme activity mirrored the mRNA changes. Basal activity was stimulated approx. 25% by adhesion in culture alone and was further stimulated (approximately 15%) by 1,25(OH)2D3 after 4 h. By 24 h similar results were achieved but the effect of 1,25(OH)2D3 could be seen in the presence of 100 nM selenium only. The expression of TrxR and its regulation by 1,25(OH)2D3 and selenite in monocytes might be important for their induction of differentiation and maintenance of function.  相似文献   

10.
11.
Previous studies have shown 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-responsive alkaline phosphatase in cultured growth zone cartilage chondrocytes is localized in extracellular matrix vesicles (MV). Since osteoblast-like cells also have 1,25-(OH)2D3-responsive alkaline phosphatase, this study determined whether the 1,25-(OH)2D3-responsive enzyme activity is localized to MV produced by these cells as well. Osteoblast-like cells from rat (ROS 17/2.8), mouse (MC 3T3), human (MG 63), and rat growth zone cartilage were cultured in Dulbecco's modified Eagle's medium containing 10(-7)-10(-12) M 1,25-(OH)2D3. Alkaline phosphatase total activity and specific activity were measured in the cell layer, MV, and plasma membrane (PM) fractions. MV and PM purity were verified by electron microscopy and MV alkaline phosphatase specific activity compared to PM (MV versus PM: ROS 17/2.8 6 x; MG 63, 5.5 x; MC 3T3, 33 x; GC, 2 x). There was a dose-dependent stimulation of MV alkaline phosphatase (5- to 15-fold increase at 10(-7)-10(-9) M) in all cell types in response to the 1,25-(OH)2D3. The PM enzyme was stimulated in a parallel fashion in the osteoblast cultures. No effect of 1,25-(OH)2D3 was observed in growth cartilage PM. Although MV accounted for less than 20% of the total activity they contributed 50% of the increase in alkaline phosphatase activity in the cell layer in response to 1,25-(OH)2D3 and MV specific activity was enriched 10 times over that of the cell layer. These are common features of MV produced by cells which calcify their matrix and suggest that hormonal regulation of MV enzymes may be important in primary calcification.  相似文献   

12.
Several clonal rat osteosarcoma cell lines were tested for the ability to express and secrete matrix Gla protein (MGP), a small vitamin K-dependent protein found in bone and cartilage. Two independently derived cell lines, UMR 106-01 and ROS 25/1, expressed MGP mRNA and secreted MGP antigen identical in size with that found in bone. No MGP message could be detected in ROS 17/2 and 2/3 cells, cell lines previously shown to synthesize the other known vitamin K-dependent bone protein, bone Gla protein (BGP), and no BGP mRNA could be detected in the cell lines which synthesize MGP. Since UMR 106-01 and ROS 17/2 are presently the best characterized clonal osteoblastic cell lines, the discovery of the mutually exclusive expression of MGP and BGP by these cell lines indicates that osteosarcoma cells can be fixed in different phenotypic states and that MGP and BGP should be useful markers for the analysis of phenotypic expression in bone. Treatment of UMR 106-01 cells with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) dramatically increased MGP mRNA within 4 h and, by 24 h, increased MGP secretion 15-fold. This is only the second example of a bone matrix protein whose synthesis is dramatically increased by vitamin D, the first being the 6-fold stimulation of BGP synthesis by 1,25(OH)2D3 in ROS 17/2 cells. The discovery that MGP and BGP are similarily regulated by 1,25(OH)2D3 was unexpected since the two proteins differ markedly in structure, physical properties, and tissue distribution. Since the synthesis of MGP is rapidly and dramatically increased by 1,25(OH)2D3, it is probable that MGP plays a role in the normal bone response to the hormone. MGP may also be the vitamin K-dependent protein whose abnormal synthesis in the Warfarin-treated animal modifies the bone response to 1,25(OH)2D3.  相似文献   

13.
In this study the relationship between cell binding of phorbol 12,13-dibutyrate (PDBu) and induction of differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was examined. Binding of [3H]PDBu increased within 12 h of 1,25-(OH)2D3 treatment, and a 60-130% increase in [3H]PDBu receptor levels was observed within 24 h. By 48 h, however, [3H]PDBu binding was not different from control. Scatchard analysis of [3H]PDBu binding showed no statistical differences in Kd value (Kd approximately equal to 30 nM) between 1,25-(OH)2D3-treated and control cells 22 h post-treatment; however, a 2-fold increase in Bmax was observed in treated (338 +/- 24 pmol/10(9) cells) compared to control cultures (170 +/- 14 pmol/10(9) cells). Stimulation of [3H]PDBu binding was dependent on 1,25-(OH)2D3 concentrations over a range of 1-100 nM. Homogenates from 1,25-(OH)2D3-treated HL-60 cells also demonstrated an increase (70%) in [3H]PDBu binding to the Ca2+/phospholipid-dependent enzyme protein kinase C as assessed by incubation of cell homogenates with [3H]PDBu in the presence of saturating phosphatidylserine and calcium concentrations. This suggests that the increase in [3H]PDBu binding cannot be entirely explained by modulation of the latter two agents. Cycloheximide (5 microM), an inhibitor of protein synthesis, ablated the 1,25-(OH)2D3-stimulated increase in [3H]PDBu binding to intact HL-60 cells. These data demonstrate that an increase in [3H]PDBu binding occurs early in the course of 1,25-(OH)2D3-induced differentiation, results from an increased number of [3H]PDBu-binding site, and is dependent on protein synthesis.  相似文献   

14.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) induces differentiation of a human promyelocytic leukemia cell line, HL-60, into monocytes/macrophages, and 25-hydroxyvitamin D3- and 1,25-(OH)2D3-24-hydroxylase activities in HL-60 mitochondria via a steroid-hormone receptor mechanism. Dibutyryl cyclic adenosine monophosphate (dbcAMP), a granulocyte inducer, significantly augmented the differentiation-inducing effect of 1,25-(OH)2D3 along the monocyte/macrophage pathway. Furthermore, dbcAMP significantly potentiated the effect of 1,25-(OH)2D3 on HL-60 cells to hydroxylate 1,25-(OH)2[26,27-3H]D3 to form 1,24,25-(OH)3[26,27-3H]D3. DbcAMP seemed to augment the effect of 1,25-(OH)2D3 in part through upregulation of the 1,25-(OH)2D3 receptor, because 10(-7) M dbcAMP increased 1,25-(OH)2D3 receptor levels approximately 2.3-fold, which was similar to a 1.9-fold augmentation by the same concentrations of dbcAMP of 1,25-(OH)2D3-induced cell characteristics to hydroxylate C-24 of 1,25-(OH)2[26,27-3H]D3. However, dbcAMP is also known to enhance HL-60 cell differentiation caused by other differentiation inducers. We have established another HL-60 clone which acquires resistance to 1,25-(OH)2D3 in the induction of cell differentiation by a defect at the postreceptor step, as reflected by resistance to other differentiation inducers, such as retinoic acid and dimethyl sulfoxide. Even in this resistant clone, dbcAMP significantly enhanced the differentiation-inducing effect of 1,25-(OH)2D3. Of interest, this clone showed resistance to dbcAMP in the induction of cell differentiation. Furthermore, we have demonstrated that intracellular cAMP levels were significantly lower in uremic serum-treated cells than in cells treated with normal human serum and that a significant positive correlation was found between intracellular cAMP levels and 1,25-(OH)2D3-induced cell differentiation. These data indicated that the intracellular cAMP level is one of the major determinants of 1,25-(OH)2D3-induced HL-60 cell differentiation and that dbcAMP could enhance the effects of 1,25-(OH)2D3 on HL-60 cells not only by increasing 1,25-(OH)2D3 receptor levels but also at the postreceptor step.  相似文献   

15.
The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], is a potent regulator of human monocyte/macrophage function in vitro. To establish a model for 1,25-(OH)2D3 regulation of human monocyte monokine synthesis, three human cell lines (U-937, THP-1, and HL-60) were examined for: 1) the presence of functional 1,25-(OH)2D3 receptors; 2) the accumulation of interleukin-1 beta (IL-1 beta) mRNA and IL-1 beta protein in response to lipopolysaccharide (LPS); and 3) the regulation of this response by 1,25-(OH)2D3. All three cell lines expressed vitamin D receptor and had increased levels of IL-1 beta mRNA in response to LPS. Preincubation of cells with 1,25-(OH)2D3 augmented IL-1 beta mRNA levels only in U-937 and HL-60 cells. From these data, and taking into consideration their state of differentiation and relative ease of culture, U-937 was chosen over HL-60 and THP-1 as the cell line we further characterized. In U-937 cells, optimum time and dose of pretreatment with 1,25-(OH)2D3 were determined to be 12-24 h at a receptor saturating concentration of 1,25-(OH)2D3 (10 nM). Preincubation of cells with 1,25-(OH)2D3 had no effect on the time course of IL-1 beta mRNA appearance in response to LPS. However, exposure of U-937 cells to 1,25-(OH)2D3 increased by 200% the level of IL-1 beta mRNA detected and decreased by three orders of magnitude the concentration of LPS required to achieve steady state mRNA levels equivalent to those observed in U-937 cells not preincubated with the hormone.2+o  相似文献   

16.
The direct effect of 1alpha,25(OH)(2)D(3) on osteoblasts remains unclear. In this study, we evaluated the in vitro effects of 1alpha,25(OH)(2)D(3) and its analogue, 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D(3) (2MD), on osteoblasts from three different species, i.e. bone marrow stromal cells from the Sprague-Dawley (SD) rat, from the C57BL/6 mouse, as well as human osteoblast NHOst cells and human osteosarcoma derived MG-63 cells. We found that in rat cells, both compounds increased cell proliferation, inhibited cell apoptosis and increased alkaline phosphatase (ALP) activity. In mouse cells, however, both compounds initiated cell apoptosis and inhibited ALP activity. In human cells, although cell proliferation was inhibited by both compounds, cell apoptosis was inhibited and ALP activity was enhanced. In each species, 2MD was much more potent than 1alpha,25(OH)(2)D(3). To summarize, species differences should be taken into account in studies of vitamin D effects. However, in all tested species - rat, mouse and human - 2MD is considerably more potent in its effects on osteoblastic cells in vitro than 1alpha,25(OH)(2)D(3).  相似文献   

17.
The effects of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) (10(-13)M-10(-8) M) and 24R ,25-dihydroxycholecalciferol ( 24R ,25-(OH)2D3) (10(-12)M-10(-7) M) on cell proliferation and proteoglycan deposition were examined in our newly developed multilayer culture system for rabbit and human articular chondrocytes. The cells are embedded in an extracellular matrix similar to that seen in vivo and maintain their in vivo phenotype. We extracted and purified native proteoglycans and degraded material from three culture compartments: the medium, intercellular matrix, and cells. Proteoglycan synthesis and deposition were analyzed by measuring 35SO4 incorporation, hexuronic acid, and galactose contents. In both rabbit and human chondrocyte cultures, chronic 1,25-(OH)2D3 treatment inhibited chondrocyte proliferation and stimulated proteoglycan synthesis and accumulation in the three compartments at 10(-12)-10(-8) M; maximal effect was at 10(-10)M. Cell proliferation was reduced by 55% and the content of hexuronic acid (or galactose) was increased to about three times that of controls in all compartments. 1,25-(OH)2D3 did not alter the proteoglycan composition. Chronic 24R ,25-(OH)2D3 treatment induced comparable effects with a maximum at 10(-8)M. When human dermal fibroblasts were treated as above both vitamin D metabolites increase mitosis. 1,25-(OH)2D3 mainly reduced the pericellular deposition of proteoglycans, while 24R ,25-(OH)2D3 appeared to reduce their synthesis and deposition in both medium and pericellular compartments. These results suggest that both 1,25-(OH)2D3 and 24R ,25-(OH)2D3 act specifically on articular chondrocytes to promote phenotype expression.  相似文献   

18.
The human promyelocytic leukemia cell line HL-60 undergoes macrophage-like differentiation after exposure to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active metabolite of vitamin D3. In the current study, we demonstrate that 1,25(OH)2D3 also regulates 25-hydroxyvitamin D3 [25(OH)D3] metabolism in HL-60 cells. The presence of 1,25(OH)2D3 in the culture medium of HL-60 cells stimulated the conversion of 7-10% of the substrate [25(OH)D3] to a more polar metabolite, which was identified as 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] from the elution positions on sequential HPLC systems and the sensitivity to periodate treatment. The HL-60 subclone HL-60 blast, which is unresponsive to 1,25(OH)2D3 in terms of differentiation, also responded to 1,25(OH)2D3 treatment with the production of 24,25(OH)2D3. Maximal stimulation of 24,25(OH)2D3-synthesis (approximately 7 pmol/5 X 10(6) cells) in HL-60 cells was noted with a 12-h exposure to 10(-9) M 1,25(OH)2D3. The ability of vitamin D3 metabolites other than 1,25(OH)2D3 to induce the synthesis of 24,25(OH)2D3 in HL-60 cells was, with the exception of 1 alpha-hydroxyvitamin D3, in correlation with their reported affinities for the specific 1,25(OH)2D3 receptor which is present in HL-60 cells. Treatment of HL-60 cells with phorbol diesters abolished the 1,25(OH)2D3 responsiveness, while treatment with dimethylsulfoxide and interferon gamma did not markedly alter the 25(OH)D3 metabolism of HL-60 cells. Small amounts (approximately 1% of substrate) of two 25(OH)D3 metabolites, which comigrated with 5(E)- and 5(Z)-19-nor-10-keto-25-hydroxyvitamin D3 on two HPLC solvent systems, were synthesized by HL-60 cells, independently from 1,25(OH)2D3 treatment or stage of cell differentiation. Our results indicate that 1,25(OH)2D3 influences 25(OH)D3 metabolism of HL-60 cells independently from its effects on cell differentiation.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) induces a marked decrease in adhesion of MG-63 human osteosarcoma cells to laminin-coated surfaces, but does not significantly alter adhesion to fibronectin- or collagen-coated surfaces. We provide evidence that this effect is due to a switch in the repertoire of cell adhesion receptors in response to TGF-beta. MG-63 cells express high levels of alpha 3 beta 1-integrin, which is a polyspecific laminin/collagen/fibronectin receptor, and low levels of alpha 2 beta 1- and alpha 5 beta 1-integrins, which are collagen and fibronectin receptors, respectively. No other integrins of the beta 1-class could be detected in MG-63 cells. Treatment with TGF-beta 1 induces a marked (approximately 60%) decrease in the level of expression of alpha 3-integrin subunit mRNA and protein and a concomitant 8-fold increase in alpha 2-subunit expression. These responses become maximal 7-12 h after addition of TGF-beta 1 to the cells. Expression of alpha 5- and beta 1-integrin subunits also increases in response to TGF-beta 1, but to a lesser extent than alpha 2-subunit expression. Thus, as a result of TGF-beta action, the alpha 2 beta 1-collagen and alpha 5 beta 1-fibronectin receptors replace the alpha 3 beta 1-laminin/collagen/fibronectin receptor as the predominant integrins of the beta 1-class in MG-63 cells. These results suggest that one of the effects of TGF-beta is to modify the adhesive behavior of certain tumor cells by changing the binding specificity of the complement of integrins that they express.  相似文献   

20.
Vitamin D and the immune system   总被引:6,自引:0,他引:6  
E P Amento 《Steroids》1987,49(1-3):55-72
The investigation of the potential influence of 1,25-(OH)2D3 on immune cells has expanded our understanding of hormone-cytokine interactions. 1,25-(OH)2D3 stimulates phenotypic and function changes in immature monocytes, alters protein synthesis, increases adherence, and augments interleukin-1 secretion. T lymphocyte proliferation and B cell immunoglobulin production are inhibited by the hormone. 1,25-(OH)2D3 decreases IL 2 and IFN-gamma synthesis by activated T lymphocytes in association with decreases in mRNA for these proteins. The step from the investigation of in vitro interactions to an understanding of in vivo effects of 1,25-(OH)2D3 on immune cells requires further study. On the basis of information at hand, such as the potential for macrophage conversion of 25-OH-D3 to 1,25-(OH)2D3, decreased or increased macrophage function in association with vitamin D3 status in vitro and in vivo, as well as altered T cell subset ratios and proliferative responses with administration of the hormone, it is tempting to speculate that 1,25-(OH)2D3 exerts an influence on immune cell function in concert with other recognized soluble mediators of monocyte and lymphocyte origin. The primary influence of 1,25-(OH)2D3 may vary with the tissue site. Systemic levels of hormone may aid in maintaining tonic immunosuppression and thus prevent trivial antigenic stimuli from initiating an immune response. Upon initiation of an immune response to a significant antigenic challenge 1,25-(OH)2D3 may, in concert with other suppressor mechanisms, limit the extent of the host response by inhibition of IL 2 and IFN-gamma production. At local sites of chronic inflammation concentrations of 1,25-(OH)2D3 may be elevated and may act in an autocrine or paracrine fashion to alter the immune response, for example, by increasing IL 1 production and antigen presentation by tissue monocyte/macrophages. The activation of T cells is associated with the synthesis of 1,25-(OH)2D3 receptors, thus potentially limiting T cell proliferation in the presence of the hormone. Other biological actions of IL 1, however, including effects on cells in bone, joint, and brain may be augmented. Thus, the end result of the opposing effects of 1,25-(OH)2D3 on immune cells and their secretory products may vary with the specific cells involved, their state of maturation and activation, and the local concentrations of the hormone. Studies to date support the concept of an expanded role for 1,25-(OH)2D3 in immune cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号