共查询到20条相似文献,搜索用时 0 毫秒
1.
植物修复技术是近年来发展起来的一种非常有前途的生物治理技术 ,也是当前学术界研究的热点领域 .本文对植物修复的类型 ,植物修复土壤、水体有机污染物、重金属和某些放射性核素的过程、机理及可能影响因子作了概括和详尽讨论 ,并就国内外近年来植物修复技术在污染环境中的应用和研究成果进行了综述 相似文献
2.
Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation. 相似文献
3.
植物修复因投资成本低、环境扰动少、二次污染易控制、美化环境等优点成为重金属污染土壤修复重要的治理技术。植物内源细胞分裂素调控植物生理活动,外源细胞分裂素对植物生理生态特征产生显著影响,且在植物修复中逐渐受到研究人员的关注。细胞分裂素能够调控植物根茎发育、叶片衰老、激素传递等过程,同时在重金属胁迫下也参与蒸腾、光合、抗性、解毒等系统的运转。以细胞分裂素对植物生理活动的调控作用研究为基础,阐述了细胞分裂素在植物修复中的作用机制。主要包括:增强光合作用,延缓叶片衰老,提升植物抗性能力;调控根茎叶发育,增加植物生物量,强化植物富集效果;增强转运蛋白表达,提高叶面蒸腾作用,促进重金属吸收转运;参与解毒过程,降低重金属毒性,调控重金属体内转化。最后提出了细胞分裂素在重金属污染土壤植物修复中的研究方向,这对促进细胞分裂素在植物修复中的实际应用具有重要意义。 相似文献
4.
Air, water, and soil are polluted by a variety of metals due to anthropogenic activities, which alter the normal biogeochemical cycling. Biodiversity has been employed widely by both developed and developing nations for environmental decontamination of metals. These technologies have gained considerable momentum in the recent times with a hype for commercialization. The United States Environmental Protection Agency's remediation program included phytoremediation of metals and radionuclides as a thrust area to an extent of 30% during the year 2000. Plants, that hyperaccumulate metals, are the ideal model organisms and attracted attention of scientists all over the world for their application in phytoremediation technology. Metal hyperaccumulators have the ability to overcome major physiological bottlenecks. The potential of hyperaccumulators for phytoremediation application relies upon their growth rates (i.e., biomass production) and metal accumulation rate (g metal per kg of plant tissue). The two primary reasons, that are limiting global application of this technology, are the slow growth rates exhibited by most naturally occurring metal hyperaccumulators and the limited solubility of metals in soils (i.e., the high affinity of metal ions for soil particles). Phytoremediation applications, relevance of transgenic plants for metal decontamination, chelate enhanced phytoremediation, chemical transformation, molecular physiology and genetic basis of metal hyperaccumulation by plants, commercialization hype for the phytoremediation technology are reviewed. 相似文献
5.
AbstractThis review briefly elucidates the research undertaken and benefits of using aromatic plants for remediation of heavy metal polluted sites. A sustainable approach to mitigate heavy metal contamination of environment is need of the hour. Phytoremediation has emerged to be one of the most preferable choices for combating the metal pollution problem. Aromatic plants can be used for remediation of contaminated sites as they are non-food crops thus minimizing the risk of food chain contamination. Most promising aromatic plants for phytoremediation of heavy metal contaminated sites have been identified from families – Poaceae, Lamiaceae, Asteraceae, and Geraniaceae. They act as potential phytostabilisers, hyper accumulators, bio-monitors, and facultative metallophytes. Being high value economic crops, monetary benefits can be obtained by growing them in tainted areas instead of food crops. It has been observed that heavy metal stress enhances the essential oil percentage of certain aromatic crops. Research conducted on some major aromatic plants in this context has been highlighted in the present review which suggests that aromatic plants hold a great potential for phytoremediation. It has been reported that essential oil from aromatic crops is not contaminated by heavy metals significantly. Thus, aromatic plants are emerging as an ideal candidate for phytoremediation. Highlights? Aromatic plants hold a great potential for phytoremediation of heavy metal contaminated sites.? Being high value economic crops, monetary benefits can be obtained by growing them in contaminated areas instead of food crops.? Research done on some major aromatic plants in this context has been highlighted in the present review. 相似文献
6.
The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by ( Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and 32P in barley ( Hordeum vulgare L.) and sunflower ( Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg ?1 substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg ?1) shoot dry weight than non-colonized controls (26.5 mg Pb kg ?1) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg ?1 root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants. 相似文献
7.
Phytoremediation technology has become one of the main techniques for remediating soils polluted by heavy metals because it does not damage the environment, but heavy metal-tolerant plants have the disadvantages of low biomass and slow growth. A pot experiment was conducted to study the effects of melatonin (Mel) on growth and cadmium (Cd) accumulation in the Cd accumulator Malachium aquaticum and hyperaccumulator Galinsoga parviflora by spraying different concentrations of Mel on them. The results showed that shoot biomass, photosynthetic pigment content and antioxidant enzyme activity were increased in both species after Mel was sprayed on their leaves. Mel reduced the Cd content in shoots of M. aquaticum and increased it in those of G. parviflora. In general, Cd accumulation was greatest in M. aquaticum when Mel was 200 μmol L ?1 (120.71 μg plant ?1, increased by 15.97% than control) and in G. parviflora when Mel was 100 μmol L ?1 (132.40 μg plant ?1, increased by 68.30% than control). Our results suggest it is feasible to improve the remediation efficiency of lightly Cd-contaminated soil by spraying G. parviflora with100 μmol L ?1 Mel. 相似文献
8.
Organic materials with different functional groups can be used to enhance metal bioavailability. Traditional organic materials (rice straw and clover) and ethylenediamine disuccinic acid (EDDS) were applied to enhance metal uptake from polluted soil by Sedum plumbizincicola after repeated phytoextraction. Changes in pH, dissolved organic carbon (DOC) and metal concentrations were determined in the soil solution after EDDS application. Amendment of the soil with ground rice straw or ground clove resulted in higher concentrations of Cd only (by factors of 1.92 and 1.71 respectively) in S. plumbizincicola compared to control soil. Treatment with 3 mmol kg(-1) EDDS increased all the metals studied by factors of 60.4, 1.67, and 0.27 for Cu, Cd, and Zn, respectively. EDDS significantly increased soil solution DOC and pH and increased soil plant-available metals above the amounts that the plants could take up, resulting in high soil concentrations of soluble metals and high risk of ground water contamination. After repeated phytoremediation of metal contaminated soils the efficiency of metal removal declines as the concentrations of bioavailable metal fractions decline. Traditional organic materials can therefore be much more effective and environmentally friendly amendments than EDDS in enhancing phytoremediation efficiency of Cd contaminated soil 相似文献
9.
Plants play an important role in the removal of excess heavy metals from soil and water. Medicinal plants can also have non-traditional use in phytoremediation technologies. Among the heavy metals, Cadmium (Cd) is the most abundant and readily taken up by the crop plants. Plant metallothioneins (MTs) are small proteins having cysteine-rich residues and appear to play key roles in metal homoeostasis. Plant metallothionein 2 (MT 2) from Coptis japonica (Gold-thread; CjMT 2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by 42 amino acids long linker region. In- silico analysis of MT 2 protein sequences of C. japonica was performed. In this study, ab initio methods were utilised for the prediction of three-dimensional structure of CjMT 2. After structure validation, heavy metal-binding sites were predicted for the selected modelled structures of CjMT 2. To obtain Cd i- CjMT 2 ( i = 1–7), metalated complex individual docking experiments were performed. The stability of the metalated docked structures was assessed by molecular dynamics (MD) simulation studies. Our study showed that CjMT 2 binds up to 4 Cd 2+ ions in two distinct domains: a N-terminal β-domain that binds to 2 Cd 2+ ions and a C-terminal α-domain that binds with 2 Cd 2+ ions. Our analysis revealed that Cys residues of alpha and beta domain and some residues of spacer region of CjMT 2 protein might be important for the cadmium interaction. MD simulation studies provided insight into metal-induced conformational changes and mechanism of metalation of CjMT 2, an intrinsically disordered protein. This study provides useful insights into mechanism of cadmium-type 2 metallothionein interaction. 相似文献
10.
The resistance of Salix to Cu, Cd, Ni, and Zn was investigated in hydroponic culture, with phytoextraction potential evaluated for Cu. Root elongation (indicative of resistance level) was significantly affected, with considerable variation between and within individual clones. Resistance appeared to be clone- or hybrid-specific, rather than species-specific. S. caprea clones (and hybrids) were among the most resistant, but a secondary S. caprea clone from a different provenance was much less tolerant. S. viminalis and S. triandra clones were the most sensitive. Highest resistance was found in response to Cd, while Cu and Ni were extremely toxic. A resistant S. caprea ecotype originating from a metalliferous mine spoil was identified using this technique. Copper concentration reached a maximum of 2000, 400, and 82 μg g -1 (d.wt) in roots, wood, and foliage, respectively, after 1 month in hydroponic culture. The level of variation in the response of Salix to metals may cause difficulties in phytoremediation screening programs, but may be essential in providing genetic variation for selection of metal resistance traits, where the contaminant profile is heterogeneous, mixed, or subject to change. Clone selection for metal phytoextraction is feasible, but a longer field-scale study on metal-contaminated soils is needed before their role in phytoremediation can be confirmed. 相似文献
11.
This is a preliminary hydroponic study to test willow sensitivity to silver nitrate, a highly toxic chemical compound. We grew willow cuttings for a period of three weeks in the presence of increasing AgNO 3 concentrations and assessed the response in terms of growth and physiology. We found that AgNO 3 is generally extremely harmful to willow. AgNO 3 concentration as high as 0.027 μM may result in a significant reduction of biomass productivity and a decrease in stomatal conductance over the first week of exposure. However, willows seem able to adapt to high AgNO 3 concentrations on a longer timeline. 相似文献
12.
以水培法及分光光度法培养、测定碱蓬幼苗在重金属胁迫下的株高、鲜重及根数,叶绿素、可溶性蛋白和丙二醛含量等各项生长指标以及过氧化物酶、过氧化氢酶的活性变化.结果表明:Pb2+、Cr6+、Hg2+和Cu2+使碱蓬植株生长出现明显抑制效果的临界浓度分别为:45 mg/kg、15 mg/kg、10 mg/kg和5 mg/kg。此浓度胁迫下,碱蓬植株鲜重降低25%~30%、根数减少12%~34%。重金属处理后,碱蓬的叶绿素和可溶性蛋白含量下降、丙二醛含量上升,且处理与对照间差异显著。Pb2+、Cr6+、Hg2+、Cu2+处理的叶绿素总量分别是对照的61%、59%、55%和67%,可溶性蛋白含量分别是对照的66.7%、58.3%、41.7%和75%,而丙二醛含量分别是对照的167%、147%、114%和131%。4种重金属胁迫下的碱蓬植株体内过氧化物酶活性均高于对照,而过氧化氢酶活性低于对照。 相似文献
13.
AbstractPhytoremediation with vetiver was investigated in relation to heavy metal contaminated soil in Thailand. The work compared the performance of two species of vetiver named Songkhla 3 ( Chrysopogon zizaniodes) and Prachuap Khiri Khan ( Chrysopogon nemoralis) in absorbing lead, zinc, and cadmium in contaminated soils. Toxicity Characteristic Leaching Procedure (TCLP), and Allium tests were conducted to determine toxicity of treated soil. Ethylenediaminetetraacetic acid (EDTA) was also used to increase heavy metals concentration in solution in soil, which led to an increase in translocation and bioaccumulation factors. In general, results showed that concentration of heavy metals decreased in soil and increased in both the shoots and roots of vetivers during a 4-month treatment period. TCLP results indicated that the concentration of zinc and cadmium in contaminated soil was reduced over treatment time, and significantly increased after EDTA was applied. To confirm vetiver performance in phytoremediation, Allium testing showed that remained heavy metals in treated soils had no effect on nucleus aberration. Songkhla 3 and Prachuap Khiri Khan showed similar trends in their ability to remediate lead, zinc, and cadmium from contaminated soil. Both species could accumulate higher concentrations of heavy metals in their shoots and roots over time, and with EDTA application. 相似文献
14.
采用原子吸收分光光度法测定攀钢西渣场冶炼渣堆土壤和6科12种优势植物中Mn、Pb、 Ni、 Cu、Cd等5种重金属含量,并计算优势植物对重金属的富积系数和转移系数.结果表明:渣堆土壤中重金属含量Mn最高(3869.14 mg/kg),次后顺序为Pb>Ni>Cu>Cd;植物与土壤的重金属分布基本一致;所测优势植物中,多数植物对重金属的富积系数较低,而转移系数却较高,如天名精对Cu的转移系数为5.1,羽芒菊对Pb转移系数为3.3,五月艾对Cd的转移系数为6.0,其中8种植物(天名精、羽芒菊等)对Mn的转移系数均大于1.该结果为重金属污染土壤的植物修复提供了参考物种,同时也为植物重金属耐受机制的研究提供了筛选对象. 相似文献
15.
Land application of biosolids to improve agricultural productivity is a cost-effective approach for resource recovery. Unfortunately, municipal biosolids often contain high concentrations of heavy metals, including zinc and copper. In this study, a co-cropping technique was investigated using a known zinc hyperaccumulator, Sedum alfredii with a grain crop, Zea mays. After a 3-mo growth trial, the results indicate that when Z. mays is co-cropped with S. alfredii, heavy metals accumulated in the grains were significantly reduced when compared to monoculture cropping. Co-cropping improved the growth of both plant species. In addition, the biosolids maintained stable pH, N-P-K concentrations, germination potential, and water content after the plant treatment, regardless of the plant species used in the trial. In conclusion, co-cropping with hyperaccumulators may be an effective approach to reducing the risk of contaminant uptake in edible crops. 相似文献
16.
系统论述了重金属污染土壤植物修复的概念、原理、方法与研究动态,列举了污染土壤植物修复的一些实例。探讨了土壤重金属超富集植物的类型、特点、应用潜力以及基因工程等现代生物技术的应用、效果与最新展望,为土壤污染的综合整治及生态修复提出了新的思路。 相似文献
17.
Following a toxic flood from a mine spill that affected over 45 km 2 in Southern Spain, experiments were conducted in 1999 to test the feasibility of using crops for phytoremediation of the area, after the mechanical removal of the mud. Two cereals, barley and triticale, and two Brassicaspp., rapeseed and ethiopian mustard, were planted in three contaminated plots, 50 × 100 m each, and in a control plot outside the affected area. Soil and plant contents of As, Cd, Cu, Pb, Tl and Zn were measured and bioaccumulation coefficients (BC) were calculated at maturity. The four crops tested accumulated Cd and Zn in the above-ground biomass only in the plot on acid soil. Both species of Brassica accumulated Tl (average BC of 3.6 and 1.4 for rapeseed and mustard, respectively, in contaminated plots). None of the four crop plants accumulated As, Cu and Pb under the experimental conditions. Maximum plant uptake values from soil were 5.4 mg m –2 of As, 0.54 mg m –2 of Cd, 9.7 mg m –2 of Cu, 7.0 mg m –2 of Pb, 3.4 mg m –2 of Tl, and 260 mg m –2 of Zn. Total crop uptake gave estimates for successful phytoremediation of at least five decades, casting doubts on the feasibility of using these crops for decontamination of the area. Nevertheless, cereal grains had mineral contents below toxicity levels for livestock, therefore it might be possible to use these crops for livestock feed while reducing deep percolation and gradually removing metals from polluted soils. 相似文献
18.
In situ immobilization and phytoextraction techniques have been used for remediation of Pb and Cd polluted soils. Three rates (0.25, 0.5 and 1.0%) of seven immobilizing agents (cement, slag, phosphate rock, bitumen, Fe- and Al-gels, and δ-MnO 2) were tested on three soils containing various levels of Pb (48–192.0 ug/g) and Cd (0.75–3.45 ug/g). All immobilizing agents reduced the plant available Pb and Cd as extracted by DTPA (diethylenetriaminepentaacetic acid). The effectiveness of the various agents in immobilizing Pb and Cd followed the descending order: bitumen > cement > slag > Fe-gel > Al-gel > phosphate rock > δ -MnO 2. Cement and phosphate rock fixed Pb and Cd mainly in the carbonate form, whereas the slag, bitumen, Fe-gel, Al-gel and δ -MnO 2 fixed the metals mainly in the oxide form. The results of pot experiment proved the high ability of barnyard grass (Echinnochloa stagninum) to accumulate elevated amounts of Pb and Cd (ranging from 291–2421 and 6.1–45.9 ug metal/g dry matter, respectively). These amounts are higher than those reported for hyperaccumulators, particularly for Pb. The amounts of Pb and Cd removed by barnyard grass represent, on average, 46 and 72% of their initial total contents in the soils, respectively. These results proved that, without any other soil treatments, barnyard grass is highly efficient in removing considerable amounts of Pb and Cd from polluted soil within a reasonably short period of time. Therefore, use of barnyard grass for the phytoremediation of Pb and Cd polluted soils is feasible and recommended as an environmentally safe and cheap method. The most significant finding of this study is to name the barnyard grass as an efficient lead accumulator plant. 相似文献
19.
Detention ponds and constructed wetlands have proven to be effective in reducing peak stormwater runoff volume and flow, and recent interest has extended to utilizing them to improve stormwater runoff quality. A review of stormwater runoff studies indicated that lead, zinc, copper, cadmium, phosphorus, and chloride are contaminants of primary concern. In laboratory settings, the uptake of contaminants by three wetland plant species, Glyceria grandis, Scirpus validus, and Spartina pectinata, was examined and removal rates from nutrient solutions inflow and nonflow reactors were measured. The removal rates varied by plant species and target contaminant, and no one species was the best accumulator of all six contaminants. Belowground tissues of all three species accumulated higher concentrations of the four heavy metals and aboveground tissues accumulated higher concentrations of phosphorus and chloride. Plants grown in flow reactors showed significantly higher accumulation rates than those grown in nonflow reactors. Also, plants grown hydroponically accumulated higher concentrations of the six target contaminants than those grown in sand reactors. However, those grown in sand had a much greater increase of biomass and removed a greater mass of the six target contaminants. Removal rates measured in these experiments can be used to design detention ponds to maximize stormwater remediation. 相似文献
20.
随着工业技术的发展,重金属在土壤和水体中的含量越来越高,重金属污染已日益成为威胁人类健康和人类生活质量的严重的社会问题和环境问题。植物修复可部分解决这一问题且正引起人们的普遍关注。但现在发现许多用于修复的超量积累植物生长缓慢、植株矮小、地上部生物量小,成了实际应用中的最大限制。利用基因工程手段改变植物对重金属吸收、转运、积累和忍耐的机制,从而提高植物对重金属的富集能力,将成为今后植物修复领域研究的一个重要方向。 相似文献
|