首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract

The present study explores the sorption properties of shelled Moringa oleifera seeds (SMOS) for removal of two environmentally important oxidation states of chromium (trivalent and hexavalent) from an aqueous system on the laboratory scale. Sorption studies reveal the optimum conditions for the removal of 81.02%; Cr (III) and 88.15% Cr (VI) as follows: biomass dosage (4.0 g), metal concentration [25mg/L for Cr (III); 50mg/L for Cr (VI)], contact time (40 minutes) at pH 6.5 and 2.5 respectively. The adsorption data were found to fit well both the Freundlich and Langmuir isotherms. Characterization of the seed powder by FTIR showed the clear presence of amino acid moieties having both positively charged amino and negatively charged carboxylic groups and confirmed that biosorption involves amino acid-chromium interactions. SEM studies of native and exhausted [Cr(III) and Cr(VI)] treated SMOS revealed large spherical clusters having a pore area of 8.66 µm2 in the case of native SMOS while dense agglomerated etched dendrite type morphology have a pore area of 0.80 µm2 in Cr (III) and 0.78 µm2 in Cr (VI) treated SMOS The spent biosorbent was regenerated and found to be effectively reusable for four cycles.  相似文献   

2.
The mycelia pellets of Penicillium simplicissimum impregnated with powdered biochar (MPPSIPB) were synthesized and applied to remove chromium (VI) from aqueous solution. The effects of pH, MPPSIPB dosage, initial Cr(VI) concentration, and contact time were investigated via batch experiments. Results indicated that the percentage removal of Cr(VI) was significantly dependent on the pH of the solution. Ten grams mycelial pellets and 0.2 g powdered biochar could form the most stable pellets. The maximum value of biosorption of Cr(VI) was 28.0 mg/g. Scanning electron microscopy (SEM) analysis showed that the mycelia pellets of Penicillium simplicissimum had abundant filamentous network, which entrapped powdered biochar firmly. Fourier transform infrared (FTIR) analysis suggested that O?H, N?H, C?H, C?O, and C?OH groups from MPPSIPB were involved in chromium binding and the subsequent reduction. Kinetic studies indicated that the pseudo-second-order equation fit best for Cr(VI) removal from aqueous solution. Freundlich isotherm was found to apply better for the adsorption equilibrium data with respect to the Langmuir isotherm. Furthermore, MPPSIPB can be separated from aqueous solution completely by filtration. Both experimental study and modeling results indicated that MPPSIPB exhibited remarkable affinity for chromate and had a potential application in Cr(VI) removal from water.  相似文献   

3.
The remediation efficiency of soils containing energetic materials (EM) is assessed using SW-846 USEPA Method 8330B. However, the extraction, which is performed by sonicating the soil samples in acetonitrile for several hours, could lead to additional degradation of EM during sample processing, and consequently, to an overestimation of remediation efficiency. To verify this, soil samples that were spiked with controlled amounts of EM were briefly exposed to remediation reagents, such as MuniRem® (a commercial sodium dithionite-based formulation) or hydrated lime, and analyzed using SW-846 USEPA Method 8330B. The most affected EM of this study was 2,4,6-trinitrotoluene (TNT), for which complete degradation was observed after exposure to hydrated lime or pH-buffered MuniRem®. Losses of 1,3,5-trinitro-1,3,5-triazinane (RDX) reached 30 ± 20% upon treatment with full pH-buffered MuniRem® and 90 ± 10% when exposed to lime. The concentrations of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were near the method’s lower limit of quantification, and subjected to large errors, which prevented us from drawing any clear conclusions regarding its degradation under the studied experimental conditions. These results highlight the necessity of performing appropriate soil sample treatments to quench the remaining hydrated lime or sodium dithionite prior to the extraction and analysis steps with SW-846 USEPA Method 8330B. Quenching of remaining remediation reagents may possibly be also required for other remediation reagents and EM.  相似文献   

4.
This study reports health risk assessment of PM1-bound carcinogenic hexavalent chromium [Cr(VI)] from central part of Indo-Gangetic plain (IGP) (PM1: particulate matter with aerodynamic diameter ≤1µm). Cr(VI) concentration has been estimated utilizing spectrophotometer with a modified novel method. Average ratio of Cr(VI)/CrT was 0.39 ± 0.07 (CrT: Total chromium) in the central IGP (Kanpur). Our study reports that mass fraction of Cr(VI) averaging at 0.39 is ~3 times higher than that assumed conventionally [Cr(VI)/CrT: 1/7]. Cancer risk assessment has been performed by assessing excess cancer risk (ECR) for the Cr(VI). ECR determined due to Cr(VI) was 57 and 14.3 (in one million) for adults and children, respectively. Our study suggests that risk due to Cr(VI) reported in previous studies were being underestimated by a factor of three. The Cr(VI)/CrT average ratio of 0.39 determined in this study was utilized to calculate risk assessment due to Cr(VI) from other locations in the IGP. Owing to large population of India (~125 million), the cancer risk due to Cr(VI) inhalation itself would become very significant. Thus, future research should focus on metal speciation of PM-bound samples from different locations to better constraint the toxicological risk assessment on a regional-to-global scale.  相似文献   

5.
Yu  Pei-Fang  Juang  Kai-Wei  Lee  Dar-Yuan 《Plant and Soil》2004,258(1):333-340
Chromium in soils is present in the form of Cr(VI) oxyanions or Cr(III) cations. The toxicity and mobility of Cr(VI) are higher than those of Cr(III), thus it is essential that the availability of Cr(VI) in soils be accurately estimated in order to assess the phytotoxicity of Cr and its resultant health hazards to animals and humans. In this study, the Cu-saturated selective ion exchange resin (DOWEX M4195) was used as an infinite sink to test the feasibility of using the resin for extracting available Cr(VI) from soil. In the experiments, the results show that the resin had a high affinity for Cr(VI) and that Cr(VI) adsorbed by resins could be desorbed by using 10% NaCl (pH 4). In addition, the adsorption and desorption of Cr(VI) were not affected by pH levels, the forms of Cr(VI) or the presence of major anions in the soil solution. The above results indicate that the Cu-saturated resin can selectively adsorb Cr(VI) from solution. In the soil extraction experiments, three Cr(VI)-spiked soils were processed using the Cu-saturated resin extraction method. The results show that amounts of soil Cr extractable by the resin had a significant negative correlation to the height of wheat seedlings grown in the Neubauer test. Comparing this to the commonly used extractant, 0.1 M HCl, the amount of soil Cr, extractable by the resin, had a higher correlation to plant height. The results suggest that the selective ion exchange resin method developed in this study is useful in evaluating the quantities of plant-available Cr(VI) in soil and can, therefore, assess the phytotoxicity of Cr in soil.  相似文献   

6.
Hexavalent chromium [Cr(VI)] is a carcinogenic genotoxin commonly found in industry and the environment. DNA damage resulting from Cr(VI) exposure triggers numerous stress responses, including activation of cell cycle checkpoints and initiation of apoptosis. Mechanisms controlling these responses, while extensively studied, have yet to be fully elucidated. Here, we demonstrate that the p38 mitogen-activated protein kinase (MAPK) is activated by Cr(VI) exposure and that inhibition of p38 function using the selective inhibitor SB203580 results in abrogation of S-phase and G2 cell cycle checkpoints in response to Cr(VI). Also, we observe that inhibition of p38 results in decreased cell survival and increased percentage of apoptotic cells following Cr(VI) treatment. Taken together, these results indicate that p38 function is critical for optimal stress response induced by Cr(VI) exposure.  相似文献   

7.
The Cu-saturated selective ion exchange resin (DOWEX M4195) extraction method was used to investigate the effects of two amendments, 5 and 15% organic matter in the form of hog-dung compost (HC) or cattle-dung compost (CC), on Cr(VI) bioavailability in three soils spiked with various levels of Cr(VI). The results showed that addition of composts could decrease the amounts of resin-extractable Cr(VI) in Cr(VI)-spiked soils, and the CC amendment decreased resin-extractable Cr(VI) more than the HC amendment. The X-ray Absorption Near-edge Structure spectroscopy (XANES) method was used to examine the distribution of Cr(III) and Cr(VI) species in Cr(VI)-spiked soils that were affected by compost amendments, and to elucidate the mechanisms for the decrease of resin-extractable Cr(VI) due to the application of composts. The XANES results suggested that the decrease in the amounts of resin-extractable Cr(VI) after compost addition was mainly due to the reduction of Cr(VI) to Cr(III). The amounts of soil resin-extractable Cr(VI) were also correlated with wheat seedling growth in order to evaluate the effect of compost amendments on decreasing the phytotoxicity of soil Cr(VI). The results showed that there was a sigmoidal relationship between soil resin-extractable Cr(VI) and the plant height of wheat seedlings and the obtained effective concentrations of resin-extractable Cr(VI) resulting in 10 and 50% growth inhibition (EC10 and EC50) were 76 and 191 mg kg−1 respectively. The above results suggested that the resin extraction method was a useful tool for assessing Cr(VI) phytotoxicity and that addition of composts would enhance Cr(VI) reduction to Cr(III) in soils and thus relieve Cr(VI) phytotoxicity.  相似文献   

8.
Chromium(VI) was removed from aqueous solution using sulfuric- and phosphoric-acid-activated Strychnine tree fruit shells (SSTFS and PSTFS) as biosorbents. Effects of various parameters such as adsorbent dose (0.02–0.1 g/L), temperature (303–333 K), agitation speed, solution pH (2–9), contact time, and initial Cr(VI) concentration (50–250 mg/L) were studied for a batch adsorption system. The optimum pH range for Cr(VI) adsorption was determined as 2. Equilibrium adsorption data were analyzed with isotherm models and the Langmuir and Freundlich models got best fitted values for SSTFS (R2 value – 0.994) and PSTFS (R2 value – 0.996), respectively. The maximum adsorption capacities of SSTFS and PSTFS were 100 and 142.85 mg/g, respectively. The biosorption process was well explained by pseudo-second-order kinetic model with higher R2 value (SSTFS – 0.996, PSTFS – 0.990) for both biosorbents. Characterization of biosorbents was done using Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, energy-dispersive X-ray analysis, and thermogravimetric analysis. Thermodynamic studies revealed the spontaneous, endothermic, and randomness in nature of the Cr(VI) adsorption process. Different concentrations of NaOH solutions were used to perform the desorption studies. The results demonstrated that both SSTFS and PSTFS can be used as an effective and low-cost biosorbent for removal of Cr(VI) from aqueous solutions.  相似文献   

9.
Chromium (Cr) is a global marine pollutant, present in marine mammal tissues. Hexavalent chromium [Cr(VI)] is a known human carcinogen. In this study, we compare the cytotoxic and clastogenic effects of Cr(VI) in human (Homo sapiens) and sperm whale (Physeter macrocephalus) skin fibroblasts. Our data show that increasing concentrations of both particulate and soluble Cr(VI) induce increasing amounts of cytotoxicity and clastogenicity in human and sperm whale skin cells. Furthermore, the data show that sperm whale cells are resistant to these effects exhibiting less cytotoxicity and genotoxicity than the human cells. Differences in Cr uptake accounted for some but not all of the differences in particulate and soluble Cr(VI) genotoxicity, although it did explain the differences in particulate Cr(VI) cytotoxicity. Altogether, the data indicate that Cr(VI) is a genotoxic threat to whales, but also suggest that whales have evolved cellular mechanisms to protect them against the genotoxicity of environmental agents such as Cr(VI).  相似文献   

10.
Abstract

A simple, fast and sensitive spectrophotometric method for the simultaneous determination of Cr(III) and Cr(VI) in effluents and contaminated waters using a UV-visible spectrophotometer, which operates with an advanced software for multicomponent analysis, is proposed. The method consists in the complexation of Cr (III) with EDTA and reaction of Cr(VI) with diphenylcarbazide (DPC). Variables, such as pH and colour stability time, were studied. The effect of concomitant ions on the simultaneous Cr(III) and Cr(VI) determination was also investigated. The sums of the chromium species concentrations obtained by the proposed method were compared with the total chromium concentrations found by electrothermal atomic absorption spectrometry. Recoveries of the chromium species between 75 and 136% were obtained for spiked samples. The linear working range for Cr(III) was 0.5-30 mg L?1, while for Cr(VI) was 0.005-0.30 mg L?1. The detection limits were 0.3 mg L?1 for Cr(III) and 0.003 mg L?1 for Cr(VI) while the quantification limits were 1.0 mg L?1 for Cr(III) and 0.01 mg L?1 for Cr(VI).  相似文献   

11.
Surface soil containing 25,100 mg/kg total Cr [12,400 mg/kg Cr(VI)] obtained from a Superfund site was used in laboratory microcosm studies to evaluate the potential for aerobic reduction of Cr(VI) by the indigenous soil microbial community. Hexavalent chromium in soil was reduced by as much as 33% (from 1840 to 1240 mg/L) within 21 days under enrichment conditions. Reduction of Cr(VI) in this system was biologically mediated and depended on the availability of usable energy sources. Mass balance studies suggested that the microbial populations removed Cr(VI) from the soil solutions by reduction. Indigenous microbial soil communities even with no history of Cr(VI) contamination were capable of mediating this process. However, Cr(VI) removal was not observed when microbial populations from a sewage sludge sample were added to the soil microcosms. The results suggest that Cr(VI)-reducing microbial populations are widespread in soil, and thus the potential exists for in situ remediation of environmentally significant levels of Cr( VI) contamination.  相似文献   

12.
Biosorption is the process of removal of any chemical molecules by the treatment of biological material. Industrialization resulted in the discharge of various toxic heavy metals into water bodies, which poses serious health hazards to humans and animals. In the present study, live Spirulina platensis was used as a biosorbent for the removal of the heavy metals chromium (Cr(VI)) and lead (Pb(II)) from the aqueous samples. S. platensis were cultured in the presence of different concentrations of heavy metals. The growth of the algal cells was found to be decreased by 59% and 36% in media containing 50 ppm Cr(VI) and Pb(II), respectively. To assess the biosorption of heavy metals, at different time intervals, the spent culture media were used to detect Cr(VI) by atomic absorption spectroscopy method and Pb(II) by 4-(2-pyridylazo)resorcinol indicator method. Results suggested that there was a significant uptake of Cr(VI) and Pb(II) from the medium by S. platensis, with corresponding decrease of metals in the medium. When metal salt solutions or industrial effluent samples were passed through the column containing immobilized live S. platensis in calcium alginate beads, the concentration of Cr(VI) was found to be reduced drastically. The present study indicates the application of S. platensis for the bioremediation of heavy metals from the samples obtained from industrial effluents.  相似文献   

13.
Abstract

Chromium speciation in the presence of organic chromium(III) complexes was investigated using solid-phase extraction. The adsorptions of Cr(VI) and Cr(III) on alumina and pumice powder were studied. Maximum sorption of Cr(VI) was obtained by alumina (90.22%), while Cr(III) was highly adsorbed onto pumice powder (86.65%). This result shows that pumice may be a new and promising adsorbent for Cr(III). The experimental equilibrium data for Cr(VI) adsorption onto alumina and Cr(III) sorption onto pumice were analysed using Langmuir and Freundlich isotherms. The separation and adsorption of Cr(VI), Cr(III) and five organic chromium(III) complexes onto pumice and alumina at different pH values were evaluated. Ethylenediaminetetraacetate (EDTA), oxalate, citrate, glycine, alanine and 8-hydroxyqinoline were used as ligands. Sorption of alanine and ethylenediaminetetraacetate complexes was higher onto alumina than pumice at pH>3. The enhancement of adsorption of chromium(III) complexes onto pumice was achieved by surface modification of pumice using a surfactant, namely hexadecyltrimethylammoniumbromür (HDTMA). The presence of surfactant enhanced the adsorption of Cr(III) citrate, oxalate, glycine and 8-hydroxyquinoline complexes onto pumice. However, the adsorption of EDTA and alanine complexes decreased, with ratio of 13.40% and 4.00% respectively. Here we demonstrate that chromium speciation methods depending on adsorption onto various adsorbents including alumina may lead erroneous results. Analytical measurements were performed by flame AAS, data were obtained by standard addition method.  相似文献   

14.
Abstract

Industrial activities discharge a large amount of wastes containing hexavalent chromium [Cr(VI)] into the environment, which poses a threat to human health. Microorganisms can be used as efficient tools for Cr(VI) remediation. In this study, the Cr(VI) removal capacity of Aspergillus niger was evaluated. A. niger could tolerate and reduce Cr(VI) by nearly 100% at concentrations ranging from 10 to 50?mg/L. Overall, almost 97% of the Cr(VI) removal was caused by extracellular reduction whereas 3% was caused by accumulation. Extracellular reduction was mediated by non-enzymatic cell secretions, whereas extracellular accumulated Cr formed precipitates on the hyphal surfaces and was partially absorbed on the cell wall. Cr(VI) also entered the cell and was reduced by the strong chromate reductase activity in cell-free extracts and then accumulated within the cell. These data suggest that A. niger, which has the capacity to remove Cr(VI) by reduction and accumulation, can be a useful tool for Cr(VI) remediation.  相似文献   

15.
Hexavalent chromium Cr(VI) is a common environmental pollutant that is treated by its reduction to the trivalent form Cr(III). The latter can be re-oxidized to the toxic form, Cr(VI), under specific conditions. A study was conducted on the removal of Cr(III) to eliminate the hazard imposed by its presence in soil as there has been some evidence that organic compounds can decrease its sorption. The effect of addition of negatively-charged biosurfactants (rhamnolipids) on chromium contaminated kaolinite was studied. Results showed that the rhamnolipids have the capability of extracting 25% portion of the stable form of chromium, Cr(III), from the kaolinite, under optimal conditions. The removal of hexavalent chromium was also enhanced compared to water by a factor of 2 using a solution of rhamnolipids. Results from the sequential extraction procedure showed that rhamnolipids remove Cr(III) mainly from the carbonate and oxide/hydroxide portions of the kaolinite. The rhamnolipids had also the capability of reducing close to 100% of the extracted Cr(VI) to Cr(III) over a period of 24 days. This study indicated that rhamnolipids could be beneficial for the removal or long–term conversion of chromium Cr(VI) to Cr(III).  相似文献   

16.
The kidney has been regarded as a critical organ of toxicity induced by acute exposure to hexavalent chromium [Cr(VI)] compounds. Reactive intermediates and free radicals generated during reduction process might be responsible for Cr(VI) toxicity. In this study, the effects of pretreatment or posttreatment of taurine on Cr(VI)-induced oxidative stress and chromium accumulation in kidney tissue of Swiss albino mice were investigated. Single intraperitoneal (ip) potassium dichromate treatment (20 mgCr/kg), as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared with the control group (p<0.05). This was accompanied by significant decreases in nonprotein sulfhydryls (NPSH) level, superoxide dismutase (SOD), and catalase (CAT) enzyme activities as well as a significant chromium accumulation (p<0.05). Taurine administration (1 g/kg, ip) before or after Cr(VI) exposure resulted in reduction of lipid peroxidation levels and improvement in SOD enzyme activity (p<0.05). On the other hand, administration of the antioxidant before Cr(VI) exposure restored the NPSH level and CAT enzyme activity and also reduced tissue chromium levels (p<0.05), whereas postreatment had only slight effects on these parameters. In view of the results, taurine seems to exert some beneficial effects against Cr(VI)-induced oxidative stress and chromium accumulation in mice kidney tissue.  相似文献   

17.
The oxidation of methionine (Met) plays an important role during biological conditions of oxidative stress as well as for protein stability. By choosing [oxo(salen)chromium(V)] ions, [(salen)Cr(V)=O](+) (where salen = bis(salicylidene)ethylenediamine) as suitable biomimics for the peptide complexes that are formed during the reduction of Cr(VI) with biological reductants, the oxidation of methionine and substituted methionines with five [oxo(salen)chromium(V)] complexes in aqueous acetonitrile has been investigated by spectrophotometric, electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) methods. In aqueous solution [(salen)Cr(V)=O](+) ion is short lived, ligation of H(2)O to the Cr center takes place and [O=Cr(V)(salen)-H(2)O](+) adduct is the active oxidant. The reaction is found to be first order each in the oxidant and the substrate. The presence of water in the reaction system accelerates the reaction rate and an inactive, stable mu-oxo dimer is also formed during the course of the reaction. On the basis of spectral, kinetic and product analysis study a mechanism involving direct oxygen transfer from [O=Cr(V)(salen)-H(2)O](+) to methionine has been proposed as a suitable mechanism for the reaction.  相似文献   

18.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

19.
Development of a new Cr(VI)-biosorbent from agricultural biowaste   总被引:2,自引:0,他引:2  
Park D  Lim SR  Yun YS  Park JM 《Bioresource technology》2008,99(18):8810-8818
Among useless but abundant agricultural biowastes such as banana skin, green tea waste, oak leaf, walnut shell, peanut shell and rice husk, in this study, banana skin was screened as the most efficient biomaterial to remove toxic Cr(VI) from aqueous solution. X-ray photoelectron spectroscopy (XPS) study revealed that the mechanism of Cr(VI) biosorption by banana skin was its complete reduction into Cr(III) in both aqueous and solid phases and partial binding of the reduced-Cr(III), in the range of pH 1.5-4 tested. One gram of banana skin could reduce 249.6 (+/-4.2)mg of Cr(VI) at initial pH 1.5. Namely, Cr(VI)-reducing capacity of banana skin was four times higher than that of a common chemical Cr(VI)-reductant, FeSO(4).7H(2)O. To diminish undesirable/serious organic leaching from the biomaterial and to enhance removal efficiency of total Cr, its powder was immobilized within Ca-alginate bead. The developed Cr(VI)-biosorbent could completely reduce toxic Cr(VI) to less toxic Cr(III) and could remove almost of the reduced-Cr(III) from aqueous phase. On the basis of removal mechanisms of Cr(VI) and total Cr by the Cr(VI)-biosorbent, a kinetic model was derived and could be successfully used to predict their removal behaviors in aqueous phase. In conclusion, our Cr(VI)-biosorbent must be a potent candidate to substitute for chemical reductants as well as adsorbents for treating Cr(VI)-bearing wastewaters.  相似文献   

20.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号