首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%–31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.  相似文献   

2.
Numerical simulation-based health risk assessment for contaminated groundwater is computationally costly. This study presents a meta-model-based statistical framework to create a series of rapid response for capturing the relations between remediation strategies (pumping rates at the wells) and remediation performance (contaminant concentrations). The meta-model is used to predict the naphthalene concentrations in groundwater under the assumption that remedial action would be implemented in 3, 5, 7, and 10 years of remediation, respectively. The simulation results from the meta-model are used as the input parameters for health risk assessment. This meta-analysis approach is applied to a naphthalene-contaminated aquifer located in a power plant in Anhui province, China. Results reveal that the exceeding level of the peak excess lifetime cancer risk is much greater than that of naphthalene concentration as compared with their environmental standards. It is also demonstrated that the proposed framework is particularly suitable to instant health risk assessment, which brings a bridge to assist in mathematically designing optimal groundwater remediation systems.  相似文献   

3.
The composition of zooplankton is known to affect the structure of the microbial trophic web. The zooplankton of the hypertrophic Laguna Chascomús (Argentina) is generally dominated by rotifers and cyclopoids copepods. An unusual dominance by small-cladocerans was observed after a massive winter fish kill in 2007. We hypothesized that small-cladocerans would increase the grazing pressure on heterotrophic flagellates (HF), reducing the degree of coupling between HF and picoplankton. The aim of this study was to investigate the microbial food web structure under two contrasting zooplankton assemblages. The lake was sampled every other week between 2007 and 2009. The abundances of heterotrophic bacteria (HB) and picocyanobacteria (Pcy) laid among the highest values reported for aquatic systems (>108 and 107 cells ml?1, respectively). Pcy averaged 53% of total picoplanktonic biomass. When small-cladocerans dominated zooplankton HF reached the higher abundance (>105 cells ml?1) and picoplankton showed the opposite pattern, while the proportion of grazing resistant morphologies (i.e. microaggregates of Pcy) was higher. In contrast, when rotifers dominated, HF abundance decreased and picoplankton increased. Our data suggest that the degree of HF–HB coupling was affected by changes in zooplankton dominance. In contrast to our initial hypothesis, the present results suggest that large numbers of rotifers (>5,000 ind. l?1) are more efficient than small-cladocerans at controlling HF populations.  相似文献   

4.
Many vadose zone models are available for environmental remediation, but few offer the procedures for verifying model predictions with field data and for dealing with uncertainties associated with model input parameters. This article presents a modified model combining a one-dimensional vadose-zone transport model and a simple groundwater mixing model with a function of Monte Carlo simulation (MCS). The modified model is applied to determine soil remedial concentrations for methyl tertiary butyl ether (MTBE). The modified model generates a distribution of MTBE ground-water concentrations at the point of compliance. This distribution can be used to estimate the risk of exceeding groundwater quality standard given soil remedial concentrations. In a case study, soil remedial concentration for MTBE is established to be 5?µg/kg, with a 95% and 10?µg/kg with a 50% probability that groundwater concentration will not exceed the water quality objective of 13?µg/L. Furthermore, this study uses MCS to investigate uncertainties of model input parameter hydraulic conductivity (K). One set of data (K1) is based on the results of hydraulic conductivity laboratory tests, and the other (K2) is based on the results of slug tests conducted in the field. As expected, the laboratory data show smaller K values than the field data. The comparison of the MCS results obtained from the two sets of K data indicates that the MTBE groundwater concentrations calculated based on K1 are generally 160 to 625% greater than those calculated based on K2 at the same percentiles of the MCS distribution. A higher soil remedial concentration of9jig/kg is then calculated based on the MCS results from K2 at 95%ile and 19?µg/kg at 50%ile.  相似文献   

5.
A novel approach to population-level assessment was applied in order to demonstrate its utility in estimating and managing the risk of zinc in a water environment. Much attention has been paid to population-level risk assessment, but there have been no attempts to determine a “safe” population-level concentration as an environmental criterion. Based on the published results of toxicity tests for various species, we first theoretically derived a threshold concentration at which a population size is unchanged due to the adverse effects of zinc exposure. To derive a zinc concentration that will protect populations in natural environments, we adopted the concept of species sensitivity distribution. Assuming the threshold concentrations of a set of species are log-normally distributed, we calculated the 95% protection level of zinc (PHC5 :population-level hazardous concentration of 5% of species), which is 107 μg/L. Meanwhile, the 95% protection criterion (HC5) based on conventional individual-level chronic toxicity, was calculated to be 14.6 μg/L. The environmentally “safe” concentration for a population-level endpoint is about 7 times greater than that for an individual-level endpoint. The proposed method provides guidance for a pragmatic approach to population-level ecological risk assessment and the management of chemicals.  相似文献   

6.
Radian Corporation conducted an investigation of 29 waste sites at an air force base in New Mexico in partial fulfillment of the RCRA operating permit requirements for the facility. The contract required that the investigation be conducted under the Installation Restoration Program (IRP/CERCLA). In an effort to satisfy both RCRA and CERCLA requirements, a hybrid approach was taken for the risk assessment. Site contaminants ranged from petroleum and unconventional fuels to solvents, pesticides, and PCBs. A screening method was developed to classify the level of contamination at each of the 29 sites based on soil and groundwater sampling results. Under this method, sites were classified as “dirty,”; “clean,”; or “borderline.”; Dirty sites did not require a full‐scale risk assessment because some form of remedial action would be necessary. However, clean sites and borderline sites required a full‐scale risk assessment. For clean sites, the risk assessment served as justification for no further action; for borderline sites, the risk assessment determined whether or not remedial action would be required. The screening method used previously developed multipathway and multimedia models for estimating potential human exposure to environmental contaminants in the air, water, and soil through inhalation, ingestion, and dermal contact routes. Pathway exposure factors (PEFs), which combined information on human physiology, behavior patterns, and models of environmental transport, were used to determine the relationship between the concentration of environmental contaminants and human exposure. The PEF converts concentrations in environmental media to lifetime‐equivalent chronic daily intakes (CDI). Three exposure pathways contributing the greatest proportion of the risk were considered for screening these sites: (1) incidental ingestion of soil; (2) dermal contact with soil; and (3) ingestion of water. This project demonstrated that a screening approach could be used effectively to limit the number of full‐scale risk assessments required for a multisite investigation.  相似文献   

7.
The predation risk of many aquatic taxa is dominated by visually searching predators, commonly a function of ambient light. Several studies propose that changes in visual predation will become a major climate-change impact on polar marine ecosystems. The High Arctic experiences extreme seasonality in the light environment, from 24 h light to 24 h darkness, and therefore provides a natural laboratory for studying light and predation risk over diel to seasonal timescales. Here, we show that zooplankton (observed using acoustics) in an Arctic fjord position themselves vertically in relation to light. A single isolume (depth-varying line of constant light intensity, the value of which is set at the lower limit of photobehaviour reponses of Calanus spp. and krill) forms a ceiling on zooplankton distribution. The vertical distribution is structured by light across timescales, from the deepening of zooplankton populations at midday as the sun rises in spring, to the depth to which zooplankton ascend to feed during diel vertical migration. These results suggest that zooplankton might already follow a foraging strategy that will keep visual predation risk roughly constant under changing light conditions, such as those caused by the reduction of sea ice, but likely with energetic costs such as lost feeding opportunities as a result of altered habitat use.  相似文献   

8.
Do xeric landscapes increase genetic divergence in aquatic ecosystems?   总被引:1,自引:0,他引:1  
1. Previous investigations of the ecological genetics among amphipods in south-western U.S.A. suggested a xeric landscape promoted genetic divergence among passively dispersed freshwater invertebrates, thereby enhancing speciation events. We predicted that less divergence would occur among amphipod populations across similar geographic distances in mesic regions. 2. Eight Hyalella azteca populations were sampled along a 200-km transect in western Oregon, U.S.A. Genetic distances among populations were estimated from randomly amplified polymorphic DNA (RAPD). Genetic analyses indicated much less divergence among Oregon populations than among Arizona populations in an arid environment. 3. Behavioural observations support the genetic data: Oregon populations exhibit little differentiation in swimming behaviour, whereas Hyalella populations in Arizona exhibit extremes in swimming behaviour. 4. These results provide preliminary support for the hypothesis that a xeric landscape promotes genetic and behavioural divergence among amphipods. Many aquatic invertebrates classified as panmictic populations may encompass genetically distinct groups; those isolated by a xeric landscape are especially prone to diversification.  相似文献   

9.
A central objective of environmental management is to maintain biodiversity, including populations of threatened species. Freshwater ecosystems are increasingly assessed by their biotic properties, but whether the resulting classifications of biotic condition are sufficient to protect species with conservation status has received very little consideration. We used data from 225 reference and impacted river sites from Finland to examine whether the occurrence and abundance of threatened macroinvertebrate species (TS) are associated with a commonly used estimate of biological condition (Observed-to-Expected number of predicted taxa of macroinvertebrates or O/E-ratio of taxonomic completeness, based on a predictive model). We suggest that a minimal acceptable condition below which restoration is needed, equivalent to, e.g. ‘good’ ecological status described by the European Union Water Framework Directive, should also ensure the occurrence of TS populations. We therefore followed conventional procedures for condition assessment, and examined two classifications by using the 10th or 25th percentiles of a reference O/E-distribution as alternative upper boundaries for the acceptable condition. The number and abundance of TS, and occurrence of individual TS showed positive relationships with the O/E. However, particularly if the 10th percentile threshold was used, there were only few occurrences and low abundance of TS in the suggested ‘good’ condition. The results imply that conventional criteria for satisfactory condition may not be sufficient for preservation of threatened river macroinvertebrates. However, our approach could bring an objective, meaningful, and societally acceptable means for setting site quality criteria in freshwater assessment.  相似文献   

10.
Bollens  Stephen M.  Cordell  Jeffery R.  Avent  Sean  Hooff  Rian 《Hydrobiologia》2002,480(1-3):87-110
Invasions of aquatic habitats by non-indigenous species (NIS), including zooplankton, are occurring at an alarming rate and are causing global concern. Although hundreds of such invasions have now been documented, surprisingly little is known about the basic biology and ecology of these invaders in their new habitats. Here we provide an overview of the published literature on NIS zooplankton, separated by life history (holoplankton vs. meroplankton), habitat (marine, estuarine, freshwater), and biological level of organization or topic (e.g. distribution and range extension, physiology, behavior, feeding, community impacts, ecosystem dynamics, etc). Amongst the many findings generated by our literature search, perhaps the most striking is the paucity of studies on community and ecosystem level impacts of NIS zooplankton, especially in marine and estuarine systems. We also present some results from two ongoing studies of invasive zooplankton in the northeast Pacific Ocean – Pseudodiaptomus inopinus in Washington and Oregon coastal estuaries, and Tortanus dextrilobatus in San Francisco Bay. Both of these Asian copepods have recently expanded their range and can at times be extremely abundant (103 m–3). We also examine some aspects of the trophic (predator–prey) ecology of these two invasive copepods, and find that they are likely to be important in the flow of material and energy in the systems in which they now pervade, although their impacts at the ecosystem level remain to be quantified. Finally, the findings of both our literature search and our two case studies of invasive zooplankton lead us to make several recommendations for future research.  相似文献   

11.
Knowledge of population genetic structure of tanoak (Lithocarpus densiflorus) is of interest to pathologists seeking natural variation in resistance to sudden oak death disease, to resource managers who need indications of conservation priorities in this species now threatened by the introduced pathogen (Phytophthora ramorum), and to biologists with interests in demographic processes that have shaped plant populations. We investigated population genetic structure using nuclear and chloroplast DNA (cpDNA) and inferred the effects of past population demographic processes and contemporary gene flow. Our cpDNA results revealed a strong pattern of differentiation of four regional groups (coastal California, southern Oregon, Klamath mountains, and Sierra Nevada). The chloroplast haplotype phylogeny suggests relatively deep divergence of Sierra Nevada and Klamath populations from those of coastal California and southern Oregon. A widespread coastal California haplotype may have resulted from multiple refugial sites during the Last Glacial Maximum or from rapid recolonization from few refugia. Analysis of nuclear microsatellites suggests two major groups: (1) central coastal California and (2) Sierra Nevada/Klamath/southern Oregon and an area of admixture in north coastal California. The low level of nuclear differentiation is likely to be due to pollen gene flow among populations during postglacial range expansion.  相似文献   

12.
13.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

14.
15.
Amphibian ranaviruses occur globally, but we are only beginning to understand mechanisms for emergence. Ranaviruses are aquatic pathogens which can cause?>?90% mortality in larvae of many aquatic-breeding amphibians, making them important focal host taxa. Host susceptibilities and virulence of ranaviruses have been studied extensively in controlled laboratory settings, but research is needed to identify drivers of infection in natural environments. Constructed ponds, essential components of wetland restoration, have been associated with higher ranavirus prevalence than natural ponds, posing a conundrum for conservation efforts, and emphasizing the need to understand potential drivers. In this study, we analyzed 4 years of Frog virus 3 prevalence and associated environmental parameters in populations of wood frogs (Lithobates sylvaticus) and green frogs (Lithobates clamitans) in a constructed pond system. High prevalence was best predicted by low temperature, high host density, low zooplankton concentrations, and Gosner stages approaching metamorphosis. This study identified important variables to measure in assessments of ranaviral infection risk in newly constructed ponds, including effects of zooplankton, which have not been previously quantified in natural settings. Examining factors mediating diseases in natural environments, particularly in managed conservation settings, is important to both validate laboratory findings in situ, and to inform future conservation planning, particularly in the context of adaptive management.  相似文献   

16.
A study has been made of the leaching of Cd, Zn, Pb, and Cu in three representative soils within the zone affected by the spill from a pyrite mine in Aznalcollar (Sevilla, Spain) employing packed soil columns. According to the breakthrough and cumulative leaching curves, the relative mobilities of the different toxic elements in the columns are as follows: Cd> Zn> Cu> Pb. The effect of leaching on the distribution of metals as a function of depth using intact soil cores was also studied. The results showed that the soils themselves have a good capacity for immobilizing the soluble fraction of the elements from the spilled mud. This capacity varied as follows: clayey soil with a high carbonate content > clayey soil with a moderate carbonate content > sandy-clay loam soil with a low carbonate content. However, sandy soils with a low carbonate content could pose a risk to groundwater if initial contamination was high. These results could be considered during the evaluation of remedial technologies for the immobilization of soil metals.  相似文献   

17.
Positive demographic responses have been reported in several species where the immigration or supplementation of genetically distinct individuals into wild populations has resulted in a genetic rescue effect. However, rarely have researchers incorporated what could be considerable risk of outbreeding depression into planning for genetic management programs. We assess the genetic effects of an experiment in genetic management involving replicate populations of California bighorn sheep (Ovis canadensis californiana) in Oregon, USA, which previously experienced poor productivity and numerical declines. In the experiment, two declining populations were supplemented with ewes from a more genetically diverse population of California bighorn sheep in Nevada. We incorporated analysis of genetic samples representing both experimental populations prior to supplementation, samples from the supplemented individuals, and samples collected from both experimental populations approximately one generation after supplementation. We used genetic analyses to assess the integration of supplemented and resident populations by identifying interpopulation hybrids. Further, we incorporated demographic simulations to assess the risk of outbreeding depression as a result of the experimental augmentation. Finally, we used data from microsatellites and mitochondrial sequences to determine if genetic management increased genetic diversity in the experimental populations. Our analyses demonstrated the success of genetic management by documenting interpopulation hybrids, identifying no evidence for outbreeding depression as a result of contact between the genetically distinct supplemented and resident populations, and by identifying increased population-level metrics of genetic diversity in postsupplementation populations compared with presupplementation levels.  相似文献   

18.
The main objective of the study was derivation of risk-based soil screening levels (RBSSLs) under two basic exposure scenarios—industrial and residential, and their comparison with the relevant soil quality standards (SQSs), applied in Poland as remedial targets. The RBSSLs were derived from standardized sets of equations that are based on the recently updated U.S. Environmental Protection Agency's human health risk assessment methods. The article presents the results concerning 12 contaminants listed in the SQS ordinance: arsenic, barium, cadmium, cobalt, chromium, copper, mercury, molybdenum, nickel, lead, tin, and zinc. Taking only the human health protection criterion into account, most of SQSs for non-carcinogenic metals under both industrial and residential scenarios seem to be too stringent if used as the remedial levels, which may lead to unnecessary remediation. On the other hand, the SQSs for carcinogenic contaminants (As, CrVI) correspond to cancer risk levels significantly higher than the acceptable level of 1E-06. The findings of the study may constitute the first step to justify the amendment of the Polish SQS ordinance aimed at establishing the new soil quality values based on clearly defined criteria.  相似文献   

19.
Environmental control of zooplankton biomass size structure(53–100, 100–202, 202–500 and >500 µm)was investigated in the three limnetic strata of 25 southernQuébec Shield lakes, Canada. Among-lake differences werethe greatest source of variation of zooplankton biomass, whereasthe strong lake–by–stratum interaction observedindicated that the vertical variations of zooplankton biomassand its size fractions were not constant from lake to lake.The analysis of spatial and local factors based on thermal stratais consistent with conceptual models of predation and nutrientcontrol on the biomass and size structure of the zooplankton.Productivity of the aquatic systems, which was driven by lakedepth, flushing rate and total phosphorus concentration, wasthe primary factor influencing total zooplankton biomass andsize structure at among-lake scale in epilimnetic waters. Theeffects of the planktivorous fish on the large zooplankton biomass(>500 µm) was more clearly perceived when the effectof lake depth was removed by partial redundancy analysis. Thisstudy showed that although bottom-up and top-down forces arecomplementary in structuring of zooplankton communities, theycan also act differently on the community attributes (e.g. biomassand size structure). Among-lake zooplankton biomass is predictablefrom lake trophy, but the size structure and vertical distributionof zooplankton communities appear to be controlled by lake stratificationand by inference to interactions with size selective predationby fish. In metalimnetic waters, the 53–100 and 100–202µm zooplankton biomass fractions were primarily dependenton abiotic factors, while the 202–500 and >500 µmfractions were related to planktivory and picophytoplanktonconcentrations. The well-oxygenated and cold hypolimnetic watersof some lakes offered a refuge from surface turbulence and planktivoryto large zooplankton size fractions (202–500 and >500µm).  相似文献   

20.
Population viability analyses are useful tools to predict abundance and extinction risk for imperiled species. In southeastern North America, the federally threatened gopher tortoise (Gopherus polyphemus) is a keystone species in the diverse and imperiled longleaf pine (Pinus palustris) ecosystem, and researchers have suggested that tortoise populations are declining and characterized by high extinction risk. We report results from a 30-year demographic study of gopher tortoises in southern Alabama (1991–2020), where 3 populations have been stable and 3 others have declined. To better understand the demographic vital rates associated with stable and declining tortoise populations, we used a multi-state hierarchical mark-recapture model to estimate sex- and stage-specific patterns of demographic vital rates at each population. We then built a predictive population model to project population dynamics and evaluate extinction risk in a population viability context. Population structure did not change significantly in stable populations, but juveniles became less abundant in declining populations over 30 years. Apparent survival varied by age, sex, and site; adults had higher survival than juveniles, but female survival was substantially lower in declining populations than in stable ones. Using simulations, we predicted that stable populations with high female survival would persist over the next 100 years but sites with lower female survival would decline, become male-biased, and be at high risk of extirpation. Stable populations were most sensitive to changes in apparent survival of adult females. Because local populations varied greatly in vital rates, our analysis improves upon previous demographic models for northern populations of gopher tortoises by accounting for population-level variation in demographic patterns and, counter to previous model predictions, suggests that small tortoise populations can persist when habitat is managed effectively. © 2021 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号