首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG–GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.  相似文献   

2.
The validity of the chalcone scaffold for the design of inhibitors of monoamine oxidase has previously been illustrated. In a systematic attempt to investigate the effect of heterocyclic substitution on the monoamine oxidase inhibitory properties of this versatile scaffold, a series of furanochalcones were synthesized. The results demonstrate that these furan substituted phenylpropenones exhibited moderate to good inhibitory activities towards MAO-B, but showed weak or no inhibition of the MAO-A enzyme. The most active compound, 2E-3-(5-chlorofuran-2-yl)-1-(3-chlorophenyl)prop-2-en-1-one, exhibited an IC50 value of 0.174 μM for the inhibition of MAO-B and 28.6 μM for the inhibition of MAO-A. Interestingly, contrary to data previously reported for chalcones, these furan substituted derivatives acted as reversible inhibitors, while kinetic analysis revealed a competitive mode of binding.  相似文献   

3.
Ubiquitin-activating enzyme (E1), which catalyzes the activation of ubiquitin in the initial step of the ubiquitination cascade, is a potential therapeutic target in multiple myeloma and breast cancer treatment. However, only a few E1 inhibitors have been reported to date. Moreover, there has been little medicinal chemistry research on the three-dimensional structure of E1. Therefore, in the present study, we attempted to identify novel E1 inhibitors using structure-based drug design. Following the rational design, synthesis, and in vitro biological evaluation of several such compounds, we identified a reversible E1 inhibitor (4b). Compound 4b increased p53 levels in MCF-7 breast cancer cells and inhibited their growth. These findings suggest that reversible E1 inhibitors are potential anticancer agents.  相似文献   

4.
The S′ subsites of human neutrophil proteinase 3 (Pr 3) were probed by constructing diverse libraries of compounds based on the 1,2,3,5-thiatriazolidin-3-one 1,1-dioxide using combinational and click chemistry methods. The multiple points of diversity embodied in the heterocyclic scaffold render it well-suited to the exploration of the S′ subsites of Pr 3. Molecular modeling studies suggest that further exploration of the S′ subsites of Pr 3 using the aforementioned heterocyclic scaffold may lead to the identification of highly selective, reversible competitive inhibitors of Pr 3.  相似文献   

5.
A series of 3-mercapto-propionic acid derivatives that function as reversible inhibitors of carboxypeptidase U have been prepared. We present a successful design strategy using cyclic, low basicity guanidine mimetics resulting in potent, selective and bioavailable inhibitors of carboxypeptidase U (TAFIa).  相似文献   

6.
AKR1C3 is a promising therapeutic target for castration-resistant prostate cancer. Herein, an evaluation of in-house library discovered substituted pyranopyrazole as a novel scaffold for AKR1C3 inhibitors. Preliminary SAR exploration identified its derivative 19d as the most promising compound with an IC50 of 0.160?μM among the 23 synthesized molecules. Crystal structure studies revealed that the binding mode of the pyranopyrazole scaffold is different from the current inhibitors. Hydroxyl, methoxy and nitro group at the C4-phenyl substituent together anchor the inhibitor to the oxyanion site, while the core of the scaffold dramatically enlarges but partially occupies the SP pockets with abundant hydrogen bond interactions. Strikingly, the inhibitor undergoes a conformational change to fit AKR1C3 and its homologous protein AKR1C1. Our results suggested that conformational changes of the receptor and the inhibitor should both be considered during the rational design of selective AKR1C3 inhibitors. Detailed binding features obtained from molecular dynamics simulations helped to finally elucidate the molecular basis of 6-amino-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles as AKR1C3 inhibitors, which would facilitate the future rational inhibitor design and structural optimization.  相似文献   

7.
The 1,5-benzothiazepine-4-one scaffold was earlier shown to provide efficient protease inhibitors. In this contribution, we describe its use in the design of factor VIIa/tissue factor inhibitors. A series containing a scaffold non-substituted on its aryl part led to compound 20 with an IC50 of 2.16 μM. Following molecular modelling studies of this compound, a second series was prepared, which necessitated the synthesis of protected 7- or 8-substituted 1,5-benzothiazepine-4-one derivatives.  相似文献   

8.
The structure-based design, synthesis, and anticancer activity of novel inhibitors of protein kinase CK2 are described. Using pyrazolo[1,5-a][1,3,5]triazine as the core scaffold, a structure-guided series of modifications provided pM inhibitors with microM-level cytotoxic activity in cell-based assays with prostate and colon cancer cell lines.  相似文献   

9.
Substituted (thio)hydantoins (2-thioxoimidazolidinones and imidazolidinediones) were reported as new potential reversible inhibitors of fatty acid amide hydrolase (FAAH). Their binding mode to FAAH was explored to rationalize their activity and give idea to design highly active inhibitors. Starting from the crystal structure of one of these molecules, docking studies provide us with rational basis for the design of new inhibitors within the thiohydantoin family.  相似文献   

10.
The xanthine oxidase (XO) plays an important role in producing uric acid, and therefore XO inhibitors are considered as one of the promising therapies for hyperuricemia and gout. We have previously reported a series of XO inhibitors with pyrazole scaffold to extend the chemical space of current XO inhibitors. Herein, we describe further structural optimization to explore the optimal heterocycle by replacing the thiazole ring of Febuxostat with 5 heterocycle scaffolds unexplored in this field. All of these efforts resulted in the identification of compound 8, a potent XO inhibitor (IC50?=?48.6?nM) with novel 2-phenylthiazole-4-carboxylic acid scaffold. Moreover, lead compound 8 exhibited hypouricemic effect in potassium oxonate-hypoxanthine-induced hyperuricemic mice. These results promote the understanding of ligand-receptor interaction and might help to design more promising XO inhibitors.  相似文献   

11.
The design, synthesis, and in vitro biochemical evaluation of a class of mechanism-based inhibitors of human leukocyte elastase (HLE) that incorporate in their structure a 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold with appropriate recognition and reactivity elements appended to it is described. The synthesized compounds were found to be efficient, time-dependent inhibitors of HLE. The interaction of the inhibitors with HLE is postulated to lead to the formation of a highly reactive N-sulfonyl imine (a Michael acceptor) that arises from an enzyme-induced sulfonamide fragmentation cascade. Subsequent reaction ultimately leads to the formation of a relatively stable acyl enzyme. The results cited herein demonstrate convincingly the superiority of the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold over other scaffolds (e.g., saccharin) in the design of inhibitors of (chymo)trypsin-like serine proteases.  相似文献   

12.
The sulfamide moiety has been utilized to design novel HDAC inhibitors. The potency and selectivity of these inhibitors were influenced both by the nature of the scaffold, and the capping group. Linear long-chain-based analogs were primarily HDAC6-selective, while analogs based on the lysine scaffold resulted in potent HDAC1 and HDAC6 inhibitors.  相似文献   

13.
Xiao K  Li X  Li J  Ma L  Hu B  Yu H  Fu Y  Wang R  Ma Z  Qiu B  Li J  Hu D  Wang X  Shen J 《Bioorganic & medicinal chemistry》2006,14(13):4535-4551
With the aim of developing small molecular non-peptide beta-secretase (BACE) inhibitors, Leu*Ala hydroxyethylene (HE) was investigated as a scaffold to design and synthesize a series of compounds. Taking advantage of efficient combinatorial synthesis approaches and molecular modeling, extensive structure-activity relationship (SAR) studies were carried out on the N- and C-terminal residues of the Leu*Ala HE scaffold. Isobutyl amine was found to be an optimal C-cap, and suitable hydroxylalkylamines at the 3-position and nitro or methyl(methylsulfonyl)amine at the 5-position of isophthalamide as the N-terminus could form additional hydrogen bonds with BACE active sites and help improve potency. Many new potent non-peptide BACE inhibitors were identified in this study. Among them, compounds 37 and 44 exhibited excellent enzyme-inhibiting potency, comparable to that of OM99-2, and obvious inhibitory effects in cell-based assay with low molecular weights (<600).  相似文献   

14.
A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23 µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10 nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound.  相似文献   

15.
The design and synthesis of a novel scaffold for potent and selective PDE5 inhibitors are described. Compound 3a was more potent (PDE5 IC50=0.31 nM) and selective (>10,000-fold vs PDE1 and 160-fold selective vs PDE6) PDE5 inhibitor than sildenafil.  相似文献   

16.
A series of novel protein geranylgeranyltransferase-I (PGGTase-I) inhibitors based on a benzoyleneurea scaffold has been synthesized. Using a benzoyleneurea scaffold as a mimetic for the central dipeptide (AA), we have developed CAAX peptidomimetic inhibitors that selectively block the activity of PGGTase-I over the closely related enzyme protein farnesyltransferase. In this new class of PGGTase-I inhibitors, compound (6c) with X=L-phenylalanine, displayed the highest inhibition activity against PGGTase-I with an IC50 value of 170 nM. The inhibitors described in this study represent novel and promising leads for the development of potent and selective inhibitors of mammalian PGGTase-I for potential application as antitumor agents.  相似文献   

17.
Novel small molecules were designed to specifically target the ligand-binding pocket of a PDZ domain. Iterative molecular docking and modeling allowed the design of an indole scaffold 10a as a reversible inhibitor of ligand binding. The 10a scaffold inhibited the interaction between MAGI-3 and PTEN and showed cellular activities that are consistent with the inhibition of NHERF-1 function.  相似文献   

18.
The AKT isoforms are a group of key kinases that play a critical role in tumorigenesis. These enzymes are overexpressed in different types of cancers, such as breast, colon, prostate, ovarian, and lung. Because of its relevance the AKT isoforms are attractive targets for the design of anticancer molecules. However, it has been found that AKT1 and AKT3 isoforms have a main role in tumor progression and metastasis; thus, the identification of AKT isoforms specific inhibitors seems to be a challenge. Previously, we identified an ATP binding pocket pan-AKT inhibitor, this compound is a 2,4,6-trisubstituted pyridine (compound 11), which represents a new interesting scaffold for the developing of AKT inhibitors. Starting from the 2,4,6-trisubstituted pyridine scaffold, and guided by structure-based design technique, 42 new inhibitors were designed and further evaluated in the three AKT isoforms by multiple docking approach and molecular dynamics. Results showed that seven compounds presented binding selectivity for AKT1 and AKT3, better than for AKT2. The binding affinities of these seven compounds on AKT1 and AKT3 isoforms were mainly determined by hydrophobic contributions between the aromatic portion at position 4 of the pyridine ring with residues Phe236/234, Phe237/235, Phe438/435, and Phe442/439 in the ATP binding pocket. Results presented in this work provide an addition knowledge leading to promising selective AKT inhibitors.  相似文献   

19.
Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.  相似文献   

20.
The elongation condensing enzymes in the bacterial fatty acid biosynthesis pathway represent desirable targets for the design of novel, broad-spectrum antimicrobial agents. A series of substituted benzoxazolinones was identified in this study as a novel class of elongation condensing enzyme (FabB and FabF) inhibitors using a two-step virtual screening approach. Structure activity relationships were developed around the benzoxazolinone scaffold showing that N-substituted benzoxazolinones were most active. The benzoxazolinone scaffold has high chemical tractability making this chemotype suitable for further development of bacterial fatty acid synthesis inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号