首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The connection of functional modules is effective for the design of DNA binding molecules with the desired sequence specificity. C(2)H(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules and are expected to recognize any DNA sequences by permutation, multi-connection, and the substitution of various sets of zinc fingers. To investigate the effects of the replacement of the terminal finger on the DNA recognition by other fingers, we have constructed the three zinc finger peptides with finger substitution at the N- or C-terminus, Sp1(zf223), Sp1(zf323), and Sp1(zf321). From the results of gel mobility shift assays, each mutant peptide binds preferentially to the target sequence that is predicted if the fingers act in a modular fashion. The methylation interference analyses demonstrate that in the cases of the N-terminal finger substitution mutants, Sp1(zf223) and Sp1(zf323), the N-terminal finger recognizes bases to different extents from that of the wild-type peptide, Sp1(zf123). Of special interest is the fact that the N-terminal finger of the C-terminal finger substitution mutant, Sp1(zf321), shows a distinct base recognition from those of Sp1(zf123) and Sp1(zf323). DNase I footprinting analyses indicate that the C-terminal finger (active finger) induces a conformational change in the DNA in the region for the binding of the N-terminal finger (passive finger). The present results strongly suggest that the extent of base recognition of the N-terminal finger is dominated by the binding of the C-terminal finger. This information provides an important clue for the creation of a zinc finger peptide with the desired specificity, which is applicable to the design of novel drugs and biological tools.  相似文献   

2.
Cys(2)-His(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules. They are expected to elevate the DNA binding affinity and specificity by increasing the number of finger modules. To investigate the relation between the number and the DNA binding affinity of the zinc finger, we have designed the two- to four-finger peptides by connecting the central zinc finger (finger 2) of Sp1 with the canonical linker sequence, Thr-Gly-Glu-Lys-Pro. Gel mobility shift assays reveal that the cognate three- and four-finger peptides, Sp1(zf222) and Sp1(zf2222), strongly bind to the predicted target sequences, but the two-finger peptide, Sp1(zf22), does not. Of special interest is the fact that the dissociation constant for Sp1(zf2222) binding to the target DNA is comparable to that for Sp1(zf222). The methylation interference, DNase I and hydroxyl radical footprintings, and circular permutation analyses demonstrate that Sp1(zf2222) binds to its target site with three successive zinc fingers and the binding of the fourth zinc finger is inhibited by DNA bending induced by the binding of the three-finger domain. The present results strongly indicate that the zinc finger protein binds to DNA by the three-finger domain as one binding unit. In addition, this information provides the basis for the design of a novel multifinger protein with high affinity and specificity for long DNA sequences, such as chromosomal DNAs.  相似文献   

3.
The DNA binding domain of GATA-1 consists of two adjacent homologous zinc fingers, of which only the C-terminal finger binds DNA independently. Solution structure studies have shown that the DNA is bent by about 15 degrees in the complex formed with the single C-terminal finger of GATA-1. The N-terminal finger stabilizes DNA binding at some sites. To determine whether it contributes to DNA bending, we have performed circular permutation DNA bending experiments with a variety of DNA-binding sites recognized by GATA-1. By using a series of full-length GATA-1, double zinc finger, and single C-terminal finger constructs, we show that GATA-1 bends DNA by about 24 degrees, irrespective of the DNA-binding site. We propose that the N- and C-terminal fingers of GATA-1 adopt different orientations when bound to different cognate DNA sites. Furthermore, we characterize circular permutation bending artifacts arising from the reduced gel mobility of the protein-DNA complexes.  相似文献   

4.
Interaction of the Tramtrack protein from Drosophila melanogaster with DNA was analyzed by a cross-linking method. Tramtrack residues cross-linkable to the partially depurinated DNA were identified by direct sequencing. The N-terminal alpha-amino group of the protein DNA-binding domain was found to be the major product of cross-linking. The location of the N terminus on the DNA was determined by identification of the DNA bases that were cross-linked to the protein alpha-amino group. We conclude that accessory N-terminal peptide preceding the first zinc finger of Tramtrack directly interacts with DNA, both in specific and nonspecific DNA-protein complexes. Our finding explains the role in the protein binding of the DNA bases outside of the direct interaction with the zinc fingers.  相似文献   

5.
6.
7.
8.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

9.
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.  相似文献   

10.
11.
12.
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.  相似文献   

13.
14.
Sato N  Ohta N 《Nucleic acids research》2001,29(11):2244-2250
The PEND protein is a DNA-binding protein in the inner envelope membrane of a developing chloroplast, which may anchor chloroplast nucleoids. Here we report the DNA-binding characteristics of the N-terminal basic region plus leucine zipper (bZIP)-like domain of the PEND protein that we call cbZIP domain. The basic region of the cbZIP domain diverges significantly from the basic region of known bZIP proteins that contain a bipartite nuclear localization signal. However, the cbZIP domain has the ability to dimerize in vitro. Selection of binding sites from a random sequence pool indicated that the cbZIP domain preferentially binds to a canonical sequence, TAAGAAGT. The binding site was also confirmed by gel mobility shift analysis using a representative binding site within the chloroplast DNA. These results suggest that the cbZIP domain is a unique DNA-binding domain of the chloroplast protein.  相似文献   

15.
16.
17.
18.
New relationships found in the process of updating the structural classification of proteins (SCOP) database resulted in the revision of the structure of the N-terminal, DNA-binding domain of the transition state regulator AbrB. The dimeric AbrB domain shares a common fold with the addiction antidote MazE and the subunit of uncharacterized protein MraZ implicated in cell division and cell envelope formation. It has a detectable sequence similarity to both MazE and MraZ thus providing an evolutionary link between the two proteins. The putative DNA-binding site of AbrB is found on the same face as the DNA-binding site of MazE and appears similar, both in structure and sequence, to the exposed conserved region of MraZ. This strongly suggests that MraZ also binds DNA and allows for a consensus model of DNA recognition by the members of this novel protein superfamily.  相似文献   

19.
Poly(ADP-ribose)polymerase is a chromatin-associated enzyme of eukaryotic cell nuclei that catalyses the covalent attachment of ADP-ribose units from NAD+ to various nuclear acceptor proteins. This post-translational modification has been postulated to influence several chromatin functions, particularly those where nicking and rejoining of DNA occur. Poly(ADP-ribosyl)ation reactions are strictly dependent upon the presence of interruptions on DNA. We have recently demonstrated that the DNA-binding domain of the protein containing two putative "zinc-fingers" binds DNA in a zinc-dependent manner. The basis for the recognition of the DNA strand breaks by this enzyme, and more precisely, its 29,000 Mr N-terminal part, which contains the metal binding sites, needed to be clarified. DNA probes harbouring a single strand interruption at a defined position were constructed from synthetic oligonucleotides. DNase I protection studies show that poly(ADP-ribose)polymerase specifically binds to a DNA single-strand break by its metal-binding domain depending upon the presence of Zn(II). These results support the idea that the enzyme participates to the maintenance of DNA integrity in eukaryotes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号