首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The MspI methyltransferase (M.MspI) recognizes the sequence CCGG and catalyzes the formation of 5-methylcytosine at the fist C-residue. We have investigated the sequence-specific DNA-binding properties of M.MspI under equilibrium conditions, using gel-mobility shift assays and DNasel footprinting. M.MspI binds to DNA in a sequence-specific manner either alone or in the presence of the normal methyl donor S-adenosyl-L-methionine as well as the analogues, sinefungin and S-adenosyl-L-homocysteine. In the presence of S-adenosyl-L-homocysteine, M.MspI shows the highest binding affinity to DNA containing a hemimethylated recognition sequence (Kd = 3.6 x 10(-7) M), but binds less well to unmethylated DNA (Kd = 8.3 x 10(-7) M). Surprisingly it shows specific, although poor, binding to fully methylated DNA (Kd = 4.2 x 10(-6) M). M.MspI binds approximately 5-fold more tightly to DNA containing its recognition sequence, CCGG, than to nonspecific sequences in the absence of cofactors. In the presence of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine or sinefungin the discrimination between specific and non-specific sequences increases up to 100-fold. DNasel footprinting studies indicate that 16 base pairs of DNA are covered by M.MspI, with the recognition sequence CCGG located asymmetrically within the footprint.  相似文献   

2.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   

3.
Genetic studies have indicated that integration of retroviral DNA into the host genome depends on the presence of the inverted repeats at the free termini of the long terminal repeats on the unintegrated DNA and on the product of the 3' end of the pol gene (the integrase [IN] protein). While the precise function of the Moloney murine leukemia virus IN protein is uncertain, others have shown that it is a DNA-binding protein and functions in the processing of the inverted repeats prior to integration. By using site-directed mutagenesis, we cloned and expressed the IN protein in Escherichia coli. Crude extracts of total cellular protein were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose filters, denatured in guanidine, renatured, and incubated with oligonucleotide probes. Single- and double-stranded oligonucleotides corresponding to the termini of unintegrated linear viral DNA were specifically bound by the IN protein in this assay. These data suggest that the role of the Moloney IN protein in the early steps of integration involves sequence-specific recognition of the DNA sequences found at the ends of the long terminal repeats.  相似文献   

4.
The v-erbA oncogene, a transduced copy of a thyroid hormone receptor, plays an important role in establishment of the transformed cell phenotype induced by avian erythroblastosis virus. The ability of thyroid hormone receptors to bind to specific sites on chromatin and to thereby modify the expression of adjacent target genes is a crucial element in their mechanism of action in the normal cell. The v-erbA protein also bound at high affinity to a set of DNA fragments recognized by the rat thyroid hormone receptor, but the relative affinity of the v-erbA protein for the different binding sites was distinct from that previously reported for the thyroid hormone receptors.  相似文献   

5.
We have solved the high-resolution crystal structures of the Drosophila melanogaster alcohol-binding protein LUSH in complex with a series of short-chain n-alcohols. LUSH is the first known nonenzyme protein with a defined in vivo alcohol-binding function. The structure of LUSH reveals a set of molecular interactions that define a specific alcohol-binding site. A group of amino acids, Thr57, Ser52 and Thr48, form a network of concerted hydrogen bonds between the protein and the alcohol that provides a structural motif to increase alcohol-binding affinity at this site. This motif seems to be conserved in a number of mammalian ligand-gated ion channels that are directly implicated in the pharmacological effects of alcohol. Further, these sequences are found in regions of ion channels that are known to confer alcohol sensitivity. We suggest that the alcohol-binding site in LUSH represents a general model for alcohol-binding sites in proteins.  相似文献   

6.
Mitochondrial DNA from Drosophila melanogaster   总被引:9,自引:0,他引:9  
  相似文献   

7.
Three new proteins which selectively bind to UV-damaged DNA were identified and purified to near homogeneity from UV-irradiated Drosophila melanogaster embryos through several column chromatographies. These proteins, tentatively designated as D-DDB P1, P2 and P3, can be identified as different complex bands in a gel shift assay by using UV-irradiated TC-31 probe DNA. Analysis of the purified D-DDB P1 fraction by native or SDS-polyacrylamide gel electrophoresis and FPLC-Superose 6 gel filtration demonstrated that it is a monomer protein which is a 30 kDa polypeptide. The D-DDB P2 protein is a monopolypeptide with a molecular mass of 14 kDa. Both D-DDB P1 and P2 highly prefer binding to UV-irradiated DNA, and have almost no affinity for non-irradiated DNA. Gel shift assays with either UV-irradiated DNA probes demonstrated that D-DDB P1 may show a preference for binding to (6-4) photoproducts, while D-DDB P2 may prefer binding to pyrimidine dimers. Both these proteins require magnesium ions for binding. D-DDB P1 is an ATP-preferent protein. These findings are discussed in relation to two recently described [Todo and Ryo (1991) Mutat. Res., 273, 85-93; Todo et al. (1993) Nature, 361, 371-374] DNA-binding factors from Drosophila cell extracts. A possible role for these DNA-binding proteins in lesion recognition and DNA-binding proteins in lesion recognition and DNA repair of UV-induced photo-products is discussed.  相似文献   

8.
Sequence-specific binding of luzopeptin to DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have examined the binding of luzopeptin, an antitumor antibiotic, to five DNA fragments of varying base composition. The drug forms a tight, possibly covalent, complex with the DNA causing a reduction in mobility on nondenaturing polyacrylamide gels and some smearing of the bands consistent with intramolecular cross-linking of DNA duplexes. DNAase I and micrococcal nuclease footprinting experiments suggest that the drug binds best to regions containing alternating A and T residues, although no consensus di- or trinucleotide sequence emerges. Binding to other sites is not excluded and at moderate ligand concentrations the DNA is almost totally protected from enzyme attack. Ligand-induced enhancement of DNAase I cleavage is observed at both AT and GC-rich regions. The sequence selectivity and characteristics of luzopeptin binding are quite different from those of echinomycin, a bifunctional intercalator of related structure.  相似文献   

9.
The purification of a Drosophila strand transfer protein is described, which involves Bio-Rex 70, Superose 6, Mono S, and single-stranded DNA-agarose chromatography. A 105,000-dalton polypeptide copurifies with the strand transfer activity on the last two column steps. The strand transferase carries out strand transfer at an unusually low protein:single-stranded DNA ratio and requires neither a nucleotide cofactor nor exogenous single-strand DNA binding protein to form heteroduplex DNA. Biochemical analysis of the reaction products has established that one strand of the DNA duplex is displaced during the reaction. Several properties, including the kinetics and stoichiometry of strand transfer, differentiate this activity from previously characterized strand transferases.  相似文献   

10.

Background

Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed ''hotspots'', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions.

Results

Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone.

Conclusions

These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex.  相似文献   

11.
DNA replication in cell-free extracts from Drosophila melanogaster.   总被引:10,自引:4,他引:6       下载免费PDF全文
G Crevel  S Cotterill 《The EMBO journal》1991,10(13):4361-4369
We have developed an efficient in vitro replication system from 0-2 h Drosophila melanogaster embryos. Demembranated Xenopus sperm DNA when incubated in such an extract first becomes enclosed in a nucleus-like structure with a nuclear envelope and a karyoskeleton. It then undergoes one round of semiconservative replication--this replication appears completely dependent on nuclear formation. Up to 30% of input DNA is nucleated in one reaction. Efficient nuclear formation and replication are dependent on a cold treatment step, prior to disruption of the embryos. They also depend on the age of the embryos used. Extracts from older embryos (0-5 h) are capable of nuclear formation, although at a much reduced efficiency, and repair synthesis, but seem to have lost the ability to initiate DNA replication. In addition to replicating sperm DNA this system appears capable of carrying out semi-conservative replication on some plasmids. However, it cannot use these to trigger nuclear formation; replication is only seen if the plasmids are coincubated with sperm DNA. The in vitro formed nuclei have not been observed to trigger nuclear envelope breakdown and entry into mitosis. However, they can re-replicate the DNA if the nuclei are permeabilized. This system should be a useful complement to the previously isolated Xenopus in vitro replication system. In addition the amenability of Drosophila to genetic study should open up new approaches not previously possible with Xenopus.  相似文献   

12.
Genetic and biochemical evidence suggests there are at least three DNA polymerases required for replication in eukaryotic cells. However, Drosophila embryonic cells have a very short duration S phase which is regulated differently. To address the question of whether embryos utilize different DNA polymerases, we employed Mono Q anion exchange chromatography to resolve the DNA polymerase activities. Two types of DNA polymerase, DNA polymerase delta and DNA polymerase alpha, were distinguished by: 1. copurification of DNA primase or 3'-5'exonuclease activities; 2. immunoblot analysis with alpha-specific polyclonal antisera; 3. sensitivity to aphidicolin and BuPdGTP; and 4. processivity measurements with and without Proliferating Cell Nuclear Antigen. These observations suggest that Drosophila embryos, similar to nonembryonic cells, have both alpha- and delta-type DNA polymerases.  相似文献   

13.
In order to study the double-strand DNA passage reaction of eukaryotic type II topoisomerases, a quantitative assay to monitor the enzymic conversion of supercoiled circular DNA to relaxed circular DNA was developed. Under conditions of maximal activity, relaxation catalyzed by the Drosophila melanogaster topoisomerase II was processive and the energy of activation was 14.3 kcal . mol-1. Removal of supercoils was accompanied by the hydrolysis of either ATP or dATP to inorganic phosphate and the corresponding nucleoside diphosphate. Apparent Km values were 200 microM for pBR322 plasmid DNA, 140 microM for SV40 viral DNA, 280 microM for ATP, and 630 microM for dATP. The turnover number for the Drosophila enzyme was at least 200 supercoils of DNA relaxed/min/molecule of topoisomerase II. The enzyme interacts preferentially with negatively supercoiled DNA over relaxed molecules, is capable of removing positive superhelical twists, and was found to be strongly inhibited by single-stranded DNA. Kinetic and inhibition studies indicated that the beta and gamma phosphate groups, the 2'-OH of the ribose sugar, and the C6-NH2 of the adenine ring are important for the interaction of ATP with the enzyme. While the binding of ATP to Drosophila topoisomerase II was sufficient to induce a DNA strand passage event, hydrolysis was required for enzyme turnover. The ATPase activity of the topoisomerase was stimulated 17-fold by the presence of negatively supercoiled DNA and approximately 4 molecules of ATP were hydrolyzed/supercoil removed. Finally, a kinetic model describing the switch from a processive to a distributive relaxation reaction is presented.  相似文献   

14.
The primase associated with the DNA polymerase-primase of Drosophila melanogaster fails to show enzymatic turnover. However, it does show turnover when dissociated from the intact polymerase-primase. Both forms of the enzyme can catalyze the synthesis of primers that are not complementary to the DNA template. Like the intact enzyme, the isolated primase synthesizes primers of a unique chain length; however, they are twice as long as those synthesized by the polymerase-primase. The activity of the primase separated from the polymerase-primase is similar in all other respects to the intact polymerase-primase.  相似文献   

15.
An omega protein from Drosophila melanogaster   总被引:16,自引:0,他引:16  
W A Baase  J C Wang 《Biochemistry》1974,13(21):4299-4303
  相似文献   

16.
17.
Caenorhabditis elegans can serve as a model system to study telomere functions due to its similarity to higher organisms in telomere structures. We report here the identification of the nematode homeodomain protein CEH-37 as a telomere-binding protein using a yeast one-hybrid screen. The predicted three-dimensional model of the homeodomain of CEH-37, which has a typical helix-loop-helix structure, was similar to that of the Myb domain of known telomere-binding proteins, which is also a helix-loop-helix protein, despite little amino acid sequence similarity. We demonstrated the specific binding of CEH-37 to the nematode telomere sequences in vitro by competition assays. We determined that CEH-37 binding required at least 1.5 repeats of TTAGGC and that the core sequence for binding was GGCTTA. We found that CEH-37 had an ability to bend telomere sequence-containing DNA, which is the case for other known telomere-binding proteins such as TRF1 and RAP1, indicating that CEH-37 may be involved in establishing or maintaining a secondary structure of the telomeres in vivo. We also demonstrated that CEH-37 was primarily co-localized to the chromosome ends in vivo, indicating that CEH-37 may play roles in telomere functions. Consistent with this, a ceh-37 mutation resulting in a truncated protein caused a weak high incidence of male phenotype, which may have been caused by chromosome instability. The identification of CEH-37 as a telomere-binding protein may represent an evolutionary conservation of telomere-binding proteins in terms of tertiary protein structure rather than primary amino acid sequence.  相似文献   

18.
M Carlson  D Brutlag 《Cell》1977,11(2):371-381
The sequence organization of the 1.688 satellite DNA (density 1.688 g/cm3 in CsCl) has been investigated, and this satellite has been found to differ from the other D. melanogaster satellite DNAs in having a much greater sequence complexity. Purification of 1.688 satellite DNA by successive equilibrium density centrifugations yielded a fraction 77% pure. Segments of satellite DNA were isolated by molecular cloning in the plasmid vector pSC101. One recombinant plasmid contained a segment of 1.688 satellite DNA 5.8 kilobase pairs in size and was stable during propagation in E. coli. Recognition sites for restriction enzymes from Haemophilus aegyptius (Hae III), Haemophilus influenzae f (Hinf) and Arthrobacter luteus (Alu I) were mapped in the satellite DNA of this hybrid plasmid. The spacing of Hae III, Hinf and two Alu I sites at regular intervals of about 365 base pairs is strong evidence that the sequence complexity of this satellite DNA is 365 base pairs. Further evidence comes from the finding that both gradient-purified and cloned 1.688 satellite DNA renature with their Hae III sites in register. The Hae III and Hinf sites in gradient-purified satellite DNA have been shown by Manteuil, Hamer and Thomas (1975) and Shen, Wiesehahn and Hearst (1976) to be distributed at intervals of 365 base pairs and integral multiples thereof. These investigators proposed that some of the sites in an otherwise regular array have been randomly inactivated. Cloned satellite DNA provided a hybridization probe for sensitive studies of the arrangement of these recognition sites in gradient-purified satellite DNA. Some regions of satellite DNA were found to contain many fewer recognition sites than expected from the proposed models. These findings suggest that different regions of 1.688 satellite DNA may exhibit different arrangements of Hae III and Hinf recognition sites.  相似文献   

19.
Purified acetylcholinesterase from Drosophila melanogaster is composed of a 55 kDa and a 16 kDa noncovalently associated subunit. Cleavage of disulfide bonds reveals that two 55 kDa polypeptides are linked together in native dimeric AChE. Western blots with two antibodies directed against the N- and C-termini of the predicted AChE primary sequence show that the 55 and 16 kDa polypeptides originate from proteolysis of the same precursor encoded by the Ace locus.  相似文献   

20.
K Wiley  H S Forrest 《Biochemistry》1979,18(3):473-476
Drosophila melanogaster contains no detectable eye-pigment binding proteins, and the previous evidence for the presence of such protein in the cecropia moth is probably not valid. The major brown pigment of Drosophila (and of Cecropia), dihydroxanthommatin, behaves as a high molecular weight compound in Sephadex chromatography, thus leading to false conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号