首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
V P Bozhkova 《Ontogenez》1986,17(5):453-469
Fertilization of eggs and effects of many growth factors on the membrane receptors of the cultured somatic cells induce similar changes in the plasma membrane transport properties, which determine changes in Ca2+ and H+ concentrations in the cytoplasm. The data are discussed which favour the concept that Ca2+ and H+ are secondary messengers of growth-stimulating influences and control many intracellular processes related to cell multiplication.  相似文献   

3.
Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. Mechanical stimuli, including the stretch and shear stress resulting from circulatory pressure and flow, modulate EC functions by activating mechanosensors, signaling pathways, and gene and protein expressions. Mechanical forces with a clear direction (e.g., the pulsatile shear stress and the uniaxial circumferential stretch existing in the straight part of the arterial tree) cause only transient molecular signaling of pro-inflammatory and proliferative pathways, which become downregulated when such directed mechanical forces are sustained. In contrast, mechanical forces without a definitive direction (e.g., disturbed flow and relatively undirected stretch seen at branch points and other regions of complex geometry) cause sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to directed mechanical stimuli involve the remodeling of EC structure to minimize alterations in intracellular stress/strain and elicit adaptive changes in EC signaling in the face of sustained stimuli; these cellular events constitute a feedback control mechanism to maintain vascular homeostasis and are atheroprotective. Such a feedback mechanism does not operate effectively in regions of complex geometry, where the mechanical stimuli do not have clear directions, thus placing these areas at risk for atherogenesis. The mechanotransduction-induced EC adaptive processes in the straight part of the aorta represent a case of the "Wisdom of the Cell," as a part of the more general concept of the "Wisdom of the Body" promulgated by Cannon, to maintain cellular homeostasis in the face of external perturbations.  相似文献   

4.
In the epithelial cells of mouse embryo renal channels, centrioles are located near the plasma membrane of the apical part of the cell. In most of the cells an active centriole carries a cilium, which comes out into the channel lumen. In the epithelial cells, suspended after trypsinisation and in single cells adhering to the substrate, the centrioles are located near the nucleus, and the outcoming cilia are not observed. In the spread cells of epithelial islets, the centrioles are also found near the nucleus, and in most cases an active centriole carries a cilium, which comes out of the cytoplasm at the upper side of the cell. In the peripheral cells of the islet, centrioles are positioned between the nucleus and the active edge of the cell. In the epithelial cells in situ, a relatively small number of microtubules radiate from the active centrioles. In the suspended cells, the activation of microtubule formation is observed in the cell center. In the spread cells of the epithelial islets there occurs a further increase in the number of microtubules radiating from the active centrioles. In the peripheral cells which cause translocation of the epithelial islet in the culture, the number of microtubules, radiating from the centrioles does not differ significantly from that of the inner cells of the islet. The cell center of the epithelial cells does not seem to be actively involved in the locomotion of the epithelial cells in the culture.  相似文献   

5.
6.
D.A. Gilbert 《Bio Systems》1974,5(4):197-206
It is generally accepted that cells contain numerous negative feedback control systems which are frequently invoked for their ability to maintain homeostasis. There is no reason to believe that the replicating cell is an exception yet paradoxically it is a highly dynamic entity in that the levels of constituents vary with time. The inconsistency between theory and observation is easily resolvable if (a) the events of the cell cycle reflect the oscillatory behaviour of certain of the regulatory processes, and, (b) proliferation control is exerted via transitions between periodic and aperiodic (or damped periodic) states as the result of changes in the values of the parameters determining the behaviour of the system. This concept is briefly discussed in relation to: the wide variety of agents that can affect replication; the existence of distinct non-proliferative states; the continuous control of proliferation rate; variations in the sensitivity toward cell cycle inhibitory agents; senescence; the ‘loss’ of control of cell division in cancer.  相似文献   

7.
8.
9.
What is the relation between things and theories, the material world and its scientific representations? This is a staple philosophical problem that rarely counts as historically legitimate or fruitful. In the following dialogue, the interlocutors do not argue for or against realism. Instead, they explore changing relations between theories and things, between contested objects of knowledge (like the cell) and less contested, more everyday things (like frog eggs scooped from a pond). Widely seen as the life sciences' first general theory, the cell theory underwent dramatic changes during the nineteenth century. The dialogue established that each successive version of the cell theory was formulated - each identity of the object cell was formed - around a different material: cork, cartilage, eggs in cleavage, muscle. Such things thus serve as exemplary materials, in ways not described by standard concepts like induction, theory-testing, theory-laden observation, and construction. Still, how can theories and perspective possibly be honed on things if these are apprehended differently by different observers according to their interests, training, culture, or indeed theories? The second part of the dialogue addresses this problem, partly through the verbal and visual schemata that were used by nineteenth-century microscopists and that are comparable to schemata in the visual arts. The third part of the dialogue considers the exemplary materials as a historical sequence, itself needing explanation. Theoretical change devolved partly from wider histories and geographies of the prevalence, availability, or scientific and cultural status of materials such as plants, animals, and muscle.  相似文献   

10.
Pain, redness, heat, and swelling are hallmarks of inflammation that were recognized as early as the first century AD. Despite these early observations, the mechanisms responsible for swelling, in particular, remained an enigma for nearly two millennia. Only in the past century have scientists and physicians gained an appreciation for the role that vascular endothelium plays in controlling the exudation that is responsible for swelling. One of these mechanisms is the formation of transient gaps between adjacent endothelial cell borders. Inflammatory mediators act on endothelium to reorganize the cytoskeleton, decrease the strength of proteins that connect cells together, and induce transient gaps between endothelial cells. These gaps form a paracellular route responsible for exudation. The discovery that interendothelial cell gaps are causally linked to exudation began in the 1960s and was accompanied by significant controversy. Today, the role of gap formation in tissue edema is accepted by many, and significant scientific effort is dedicated toward developing therapeutic strategies that will prevent or reverse the endothelial cell gaps that are present during the course of inflammatory illness. Given the importance of this field in endothelial cell biology and inflammatory disease, this focused review catalogs key historical advances that contributed to our modern-day understanding of the cell biology of interendothelial gap formation.  相似文献   

11.
12.
The development of a complex multicellular organism requires a coordination of growth and cell division under the control of patterning mechanisms. Studies in yeast have pioneered our understanding of the relationship between growth and cell division. In recent years, many of the pathways that regulate growth in multicellular eukaryotes have been identified. This work has revealed interesting and unexpected relationships between mechanisms that regulate growth and the cell cycle machinery.  相似文献   

13.
Boye E  Nordström K 《EMBO reports》2003,4(8):757-760
In order to multiply, both prokaryotic and eukaryotic cells go through a series of events that are collectively called the cell cycle. However, DNA replication, mitosis and cell division may also be viewed as having their own, in principle independent, cycles, which are tied together by mechanisms extrinsic to the cell cycle—the checkpoints—that maintain the order of events. We propose that our understanding of cell-cycle regulation is enhanced by viewing each event individually, as an independently regulated process. The nature of the parameters that regulate cell-cycle events is discussed and, in particular, we argue that cell mass is not such a parameter.  相似文献   

14.
15.
Cell division must be tightly coupled to cell growth in order to maintain cell size, yet the mechanisms linking these two processes are unclear. It is known that almost all proteins involved in cell division shuttle between cytoplasm and nucleus during the cell cycle; however, the implications of this process for cell cycle dynamics and its coupling to cell growth remains to be elucidated. We developed mathematical models of the cell cycle which incorporate protein translocation between cytoplasm and nucleus. We show that protein translocation between cytoplasm and nucleus not only modulates temporal cell cycle dynamics, but also provides a natural mechanism coupling cell division to cell growth. This coupling is mediated by the effect of cytoplasmic-to-nuclear size ratio on the activation threshold of critical cell cycle proteins, leading to the size-sensing checkpoint (sizer) and the size-independent clock (timer) observed in many cell cycle experiments.  相似文献   

16.
A bimolecular mechanism for the cell size control of the cell cycle   总被引:2,自引:0,他引:2  
A molecular model for the control of cell size has been developed. It is based on two molecules, one (I) acts as an inhibitor of the entrance into S phase, and it is synthetised just after cell separation in a fixed amount per nucleus. The other (A) is an activator of the S phase, and it is synthetised at a ratio proportional to the overall protein accumulation. The activator reacts stoichiometrically with (I), and after all the (I) molecules have been titrated, (A) begins to accumulate. When it reaches a threshold value, it triggers the onset of DNA replication. This model was tested by simulation and when applied to the case of unequal division explains a number of features of an exponentially growing yeast cell population: (a) the lengths of TP (cycle time of parent cells) and TD (cycle time of daughter cells) verify the condition exp(- KTP ) + exp(- KTD ) = 1; (b) the changes of the average cell size of populations at different growth rates; (c) the frequency of parents and daughters at various growth rates; (d) the increase of cell size at bud initiation for cells of increasing genealogical age; (e) the existence of a TP - TB period (difference between the cycle time of parents and the length of budded phase) that depends linearly upon the doubling time of the population.  相似文献   

17.
18.
The study of the cell biology of antigen processing and presentation has greatly contributed to our understanding of the immune response. The work of many immunologically inclined cell biologists has also permitted us to gain new insights on cellular mechanisms shared by many cell types. Dendritic cells are master regulators of the immune system and consequently have received a lot of attention in recent years. With the aim of controlling antigen processing and presentation, the solutions used by dendritic cells to respond to environmental changes are numerous and surprising. In the presence of pathogens, dendritic cells regulate strongly their endocytic pathway by interfering with uptake, proteolysis, membrane dynamics and transport in and out of the lysosome to become the most potent antigen-presenting cells known.  相似文献   

19.
IAA-induced elongation of light-grown cucumber hypocotyl sectionswas examined with respect to the osmotic relationship of thecell. Sucrose suppression of IAA-induced elongation in the lightoccurred at a lower sucrose concentration than in the dark,but there was no difference in the mannitol concentration whichsuppressed elongation. This differential sucrose suppressioncould be explained by the difference in the osmotic potentialof the cells between light and darkness. It was lower in thedark than in light, and the difference was more distinct inthe presence of sucrose. Treatment of sections with a photosyntheticinhibitor, CMU, also resulted in the maintenance of a low osmoticpotential. Under the experimental conditions where a largerIAA-induced elongation was obtained, a lower osmotic potentialwas also obtained. The results are discussed with respect tothe role of the osmotic potential of the cell in the enhancementof IAAinduced elongation. (Received April 3, 1978; )  相似文献   

20.
Analysis of growth and division often involves measurements made on cell populations, which tend to average data. The value of single cell analysis needs to be appreciated, and models based on findings from single cells should be taken into greater consideration in our understanding of the way in which cell size and division are co-ordinated. Examples are given of some single cell analyses in mammalian cells, yeast and other microorganisms. There is also a short discussion on how far the results are in accord with simple models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号