首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of leucine biosynthesis in Bacillus subtilis   总被引:5,自引:3,他引:2       下载免费PDF全文
The biosynthesis of alpha-isopropylmalate (alphaIPM) synthetase, IPM isomerase, and betaIPM dehydrogenase in Bacillus subtilis can be derepressed in leucine auxotrophs by limiting them for leucine. The derepression of the three enzymes is apparently coordinate. A class of mutants resistant to 4-azaleucine excretes leucine and has derepressed levels of all three enzymes. The azaleucine-resistance mutations may lie in a gene (azlA) encoding a repressor. Efforts to find mutations characteristic of a constitutive operator have been unsuccessful. No polar mutations have been found among nine leucine auxotrophs that have characteristics of frameshift mutations. The enzyme catalyzing the first step in leucine biosynthesis, alphaIPM synthetase, is sensitive to feedback inhibition by leucine. We conclude that leucine biosynthesis is controlled by the inhibition of the activity of the first biosynthetic enzyme by leucine, and by the repression of the synthesis of the first three biosynthetic enzymes by leucine. The repression of the three enzymes may be under the control of a single repressor and a single operator, or of a single repressor and a separate operator for each structural gene.  相似文献   

2.
Genetic improvement of l-leucine productivity in strain 218, an ile 2-thiazolealanine-resistant mutant of Brevibacterium lactofermentum 2256, was attempted. In strain 218, which produced 28 mg of l-leucine per ml from 13% glucose, alpha-isopropylmalate synthetase was genetically desensitized and derepressed to the effect of l-leucine, whereas alpha-acetohydroxy acid synthetase remained unaltered, although it could be derepressed phenotypically by limiting the isoleucine concentration in the culture. From strain 218 we isolated 103 mutants resistant to beta-hydroxyleucine (4 mg/ml). Among these, three were found to produce mere l-leucine than the parent. The alpha-acetohydroxy acid synthetase of all three mutant strains was found to be genetically desensitized to all of the branched-chain amino acids l-isoleucine, l-valine, and l-leucine. The repression mechanism in alpha-acetohydroxy acid synthetase formation was the same as in the parent strain. The improved strains typically produced 34 mg of l-leucine per ml, the highest productivity ever reported.  相似文献   

3.
Metabolism of leucine in protein-caloriedeficient rats   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Protein-calorie-depleted rats exhibit a decreased ability to oxidize leucine as compared with control animals. 2. The block in degradation of l-leucine is due to decreased activities of l-leucine transaminase and d-amino acid oxidase associated with liver mitochondria. 3. Cytoplasmic l-leucine transaminase in liver is not affected by the protein depletion. 4. The specific activities of the mitochondrial enzymes can be increased by a single oral dose of 1g. of Bacto-Peptone (meat hydrolysate). The effect of Bacto-Peptone can be inhibited by prior administration of dosages of 10mg. of puromycin/100g. body wt., suggesting that the increased enzyme specific activities may be due to new synthesis of enzyme protein.  相似文献   

4.
Two trifluoroleucine-resistant mutants of Salmonella typhimurium, strains CV69 and CV117, had an altered leucyl-transfer ribonucleic acid (tRNA) synthetase. The mutant enzymes had higher apparent K(m) values for leucine (ca. 10-fold) and lower specific activities (ca. twofold) than the parent enzyme when tested in crude extracts. Preparations of synthetase purified ca. 60-fold from the parent and strain CV117 differed sixfold in their leucine K(m) values. In addition, the mutant enzyme was inactivated faster than the parent enzyme at 50 C. The growth rates of strains CV69 and CV117 at 37 C were not significantly different from that of the parent, whereas at 42 C strain CV69 grew more slowly than the parent. Leucine-, valine-, and isoleucine-forming enzymes were partially derepressed when the mutants were grown in minimal medium; the addition of leucine repressed these enzymes to wild-type levels. During growth in minimal medium, the proportion of leucine tRNA that was charged in the mutants was about 75% of that in the parent. The properties of strain CV117 were shown to result from a single mutation located near gal at minute 18 on the genetic map. These studies suggest that leucyl-tRNA synthetase is involved in repression of the enzymes required for the synthesis of branched-chain amino acids.  相似文献   

5.
Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.  相似文献   

6.
The regulation of the formation of isoleucine-valine biosynthetic enzymes was examined to elucidate the mechanism of isoleucine-valine accumulation by alpha-aminobutyric acid-resistant (abu-r) mutants of Serratia marcescens. In the isoleucine-valine auxotroph, l-threonine dehydratase, acetohydroxy acid synthetase, and transaminase B were repressed when isoleucine, valine, and leucine were simultaneously added to minimal medium. These enzymes were derepressed at the limitation of any single branched-chain amino acid. Pantothenate, which stimulated growth of this auxotroph, had no effect on the enzyme levels. It became evident from these results that in S. marcescens isoleucine-valine biosynthetic enzymes are subject to multivalent repression by three branched-chain amino acids. The abu-r mutants had high enzyme levels in minimal medium, with or without three branched-chain amino acids. Therefore, in abu-r mutants, isoleucine-valine biosynthetic enzymes are genetically derepressed. This derepression was considered to be the primary cause for valine accumulation and increased isoleucine accumulation.  相似文献   

7.
The three enzymes in the leucine biosynthetic pathway of yeast do not exhibit coordinate repression and derepression in response to the carbon source available in the culture medium. Growth in an acetate medium results in derepression of the first enzyme in the pathway, alpha-isopropylmalate synthase, and repression of the second two enzymes, alpha-isopropylmalate isomerase and beta-isopropylmalate dehydrogenase, relative to the levels found in glucose-grown cells. The role of endogenous leucine pools as a mediator of these differences was investigated. The leucine pools did not differ significantly between acetate-grown and glucose-grown cells. However, an elevated endogenous leucine pool, caused by exogenous leucine in the growth medium, did decrease the rate of decay of alpha-isopropylmalate synthase activity observed when acetate-grown cells were shifted to glucose. Evidence is provided suggesting that an elevated endogenous leucine pool may increase the in vivo stability of alpha-isopropylmalate synthase under several different conditions. Studies on the kinetics of alpha-isopropylmalate synthase decay in vivo and sensitivity to leucine inhibition indicate that there are two classes of the enzyme in acetate-grown yeast cells.  相似文献   

8.
The leucine analogue 5',5',5',-trifluoroleucine (fluoroleucine) replaced leucine for repression of the isoleucine-valine biosynthetic enzymes in Salmonella typhimurium. In contrast, the analogue had no effect on derepression of the leucine biosynthetic enzymes in leucine auxotrophs grown on limiting amounts of leucine. The effect of fluoroleucine on repression appeared to be specific for leucine since derepression of the isoleucine-valine enzymes due to an isoleucine or valine limitation was not affected by the analogue. The prevention of derepression by fluoroleucine was probably due to repression and not to the formation of false proteins, since the analogue had no effect on the derepression of a number of enzymes unrelated to the isoleucine-valine pathway. Fluoroleucine was able to attach to leucine transfer ribonucleic acid (tRNA) as evidenced by the ability of the analogue to protect about 70% of leucine tRNA from oxidation by periodate. We propose that the differential effects of fluoroleucine on repression are due to differences in the ability of the analogue to bind to the various species of leucine tRNA.  相似文献   

9.
Regulation of leucine catabolism in Pseudomonas putida   总被引:2,自引:0,他引:2       下载免费PDF全文
The generation time of Pseudomonas putida with l-leucine was 20 h in synthetic media but only 3 h with d-leucine. Slow growth in the presence of l-leucine was partially overcome by addition of 0.1 mM amounts of either d-valine, l-valine, or 2-ketoisovalerate. The activities of five enzymes which take part in the oxidation of leucine by P. putida were measured under various conditions of growth. Four enzymes were induced by growth with dl-leucine as sole source of carbon: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-methylcrotonyl-coenzyme A carboxylase, and 3-hydroxy-3-methylglutaryl-coenzyme A lyase. The segment of the pathway required for oxidation of 3-methylcrotonate was induced by growth on isovalerate or 3-methylcrotonate without formation of the preceding enzymes. The synthesis of carboxylase and lyase appeared to have been repressed by the addition of l-glutamate or glucose to cells growing on dl-leucine as the sole carbon source. Mutants unable to grow at the expense of isovalerate had reduced levels of carboxylase and lyase, whereas the levels of three enzymes common to the catabolism of all three branched-chain amino acids and those of two isoleucine catabolic enzymes were normal.  相似文献   

10.
3-Deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase and anthranilate synthetase are key regulatory enzymes in the aromatic amino acid biosynthetic pathway. The DAHP synthetase activity of Hansenula polymorpha was subject to additive feedback inhibition by phenylalanine and tyrosine but not by tryptophan. The synthesis of DAHP synthetase in this yeast was not repressed by exogenous aromatic amino acids, singly or in combinations. The activity of anthranilate synthetase was sensitive to feedback inhibition by tryptophan, but exogenous tryptophan did not repress the synthesis of this enzyme. Nevertheless, internal repression of anthranilate synthetase probably exists, since the content of this enzyme in H. polymorpha strain 3-136 was double that in the wild-type and less sensitive 5-fluorotryptophan-resistant strains. The biochemical mechanism for the overproduction of indoles by the 5-fluorotryptophan-resistant mutants was due primarily to a partial desensitization of the anthranilate synthetase of these strains to feedback inhibition by tryptophan. These results support the concept that inhibition of enzyme activities rather than enzyme repression is more important in the regulation of aromatic amino acid biosynthesis in H. polymorpha.  相似文献   

11.
The effects of three factors (ammonia, L-glutamate, and cyclic adenosine 3',5'-monophosphate) on the ammonia assimilatory processes in aerobically grown Rhizobium japonicum colony derivatives were examined. Ammonia repressed glutamine synthetase activity and increased the average state of adenylylation of this enzyme. The addition of L-glutamate drastically decreased growth and strongly repressed glutamate synthase levels. Glutamine synthetase repression and adenylylation state were also increased by L-glutamate. The presence of cyclic AMP led to the repression of all three NH+4 assimilatory enzymes.  相似文献   

12.
Expression of the leucine operon   总被引:26,自引:20,他引:6  
Burns, R. O. (Cold Spring Harbor Laboratories of Quantitative Biology, Cold Spring Harbor, N.Y.), J. Calvo, P. Margolin, and H. E. Umbarger. Expression of the leucine operon. J. Bacteriol. 91:1570-1576. 1966.-The four genes which specify the structure of the three enzymes specifically involved in the biosynthesis of leucine in Salmonella typhimurium constitute a single operon. Three types of control mutants have been delineated on the basis of their location on the Salmonella chromosome and the manner in which they coordinately affect the rates of synthesis of the pertinent enzymes. The three types of mutants correspond to operator-negative, operator-constitutive, and regulator-negative. The rate of synthesis of the enzymes can also be altered by varying the amount of leucine made available to the cell. Leucine can be effectively limited by limiting the supply of alpha-ketoisovalerate, but in doing so two of the three enzymes, alpha-isopropylmalate synthetase and isopropylmalate isomerase, are labilized. This observation was correlated with an in vivo diminution of the levels of the substrates of these enzymes and the fact that alpha-ketoisovalerate and alpha-isoporpylmalate protect the respective enzymes against thermal inactivation in vitro. The functional association of the structural genes is also illustrated by the presence of polarity mutations; that is, certain structural gene mutations lower the rates of synthesis of the enzymes specified by genes located distally to the mutated gene and the operator segment of the operon.  相似文献   

13.
A number of methyl ketones have been prepared from l-leucine and found to be competitive inhibitors of Aeromonas aminopeptidase. These inhibitors were leucine methyl ketone (Ki 18 μm), leucine chloromethyl ketone (Ki 0.67 μm), and leucine bromomethyl ketone (Ki 0.20 μm), and the corresponding succinimido derivative (Ki 170 μm), succinamic acid derivative (Ki 6.9 μm) and phthalimido derivative (Ki 140 μm). Reversible inhibition was observed for all of the inhibitors tested, indicating that the active site of this enzyme is not alkylated or acylated by the nucleophile-sensitive components of some of the inhibitors.The chloromethyl ketones derived from l-leucine and l-phenylalanine were found to have the same relative binding constants as the substrates, l-leucinamide and l-phenylalaninamide.  相似文献   

14.
The growth on pseudouridine of two pyrimidine auxotrophs of Escherichia coli (Bu(-) and W63-86) was markedly enhanced when glycerol replaced glucose as a carbon source or when adenosine 3':5'-cyclic monophosphoric acid was added to medium containing glucose. These results indicated that an enzyme catalyzing a reaction in the pathway of pseudouridine conversion to uracil was sensitive to catabolite repression. The following pathway is proposed for pseudouridine utilization: [Formula: see text] [Formula: see text] Pseudouridylate synthetase was sensitive to catabolite repression in strains Bu(-) and W63-86. In contrast, strains B5RU and W5RU, mutants of Bu(-) and W63-86 which were selected for their ability to grow rapidly on pseudouridine in the presence of glucose, had high levels of pseudouridylate synthetase in the presence of glucose. In the case of B5RU but not W5RU, synthetase activity was greater in cells grown on glycerol or on glucose plus adenosine 3':5-cyclic monophosphoric acid than on glucose.  相似文献   

15.
Addition of 0.1% casein hydrolysate to a minimal growth medium decreased membrane-bound transhydrogenase activity in Escherichia coli by about 80%. Of the amino acids added individually to the growth medium, only leucine and, to a lesser extent, methionine and alanine were effective, alpha-Ketoisocaproate- and leucine-containing peptides repressed the activity, and leucine also repressed activity in adenyl cyclase-deficient and relaxed strains. Derepression of transhydrogenase followed the removal of leucine from the growth medium and was sensitive to rifampin and chloramphenicol. A phosphoglucoisomerase-deficient strain that was forced to use the hexose monophosphate shunt exclusively had normal levels of transhydrogenase, which was repressed by leucine. Transhydrogenase activity doubled in mutants lacking either of the shunt dehydrogenases but was still repressed by leucine. In strains constitutive for the leucine biosynthetic operon, transhydrogenase was repressed by leucine but in strains livR and lst R, with leucine transport resistant to leucine repression, transhydrogenase was not repressed by leucine. These data suggest that transhydrogenase may have a function in the transport of branched-chain amino acids. In a hisT strain (which has altered leucyl-tRNA), transhydrogeanse was at a repressed level without the addition of leucine, suggesting that leucyl-tRNA may be involved in the regulation.  相似文献   

16.
Using a minimal medium containing a methionine analog together with a small amount of S-adenosylmethionine (SAM), many SAM requiring mutants which responded only to SAM and not to methionine, S-adenosylhomocysteine, or homocysteine were efficiently isolated from Corynebacterium glutamicum TLD-140 after mutagenesis. Among them, SAM-14 and SAM-19 selected from selenomethionine resistant mutants were subjected to further investigation. Both mutants were unable to grow in a minimal medium and had no detectable activity of SAM synthetase. Both mutants acquired higher resistance to methionine hydroxamate and ethionine as well as to selenomethionine than TLD-140 and produced l-methionine in a medium.

Homoserine-O-transacetylase in SAM-19 was subject to full repression by the addition of excess SAM to the growth medium and was not repressed under SAM limitation, whereas addition of excess l-methionine under SAM limitation caused a partial repression of the enzyme. SAM synthetase as well as l-methionine biosynthetic enzymes in a methionine auxotroph of C. glutamicum was repressed by the addition of l-methionine to the growth medium.

These results suggest that SAM is implicated in the repression of l-methionine synthesizing enzymes in C. glutamicum.  相似文献   

17.
Various apoptotic signals can activate caspases 3 and 7 by triggering the L2 loop cleavage of their proenzymes. These two enzymes have highly similar structures and functions, and serve as apoptotic executioners. The structures of caspase 7 and procaspase 7 differ significantly in the conformation of the loops constituting the active site, indicating that the enzyme undergoes a large structural change during activation. To define the role of the leucine residue on the L2 loop, which shows the largest movement during enzyme activation but has not yet been studied, Leu168 of caspase 3 and Leu191 of caspase 7 were mutated. Kinetic analysis indicated that the mutation of the leucine residues sometimes improved the Km but also greatly decreased the kcat, resulting in an overall decrease in enzyme activity. The tryptophan fluorescence change at excitation/emission = 280/350 nm upon L2-L2' loop cleavage was found to be higher in catalytically active mutants, including the corresponding wild-type caspase, than in the inactive mutants. The crystal structures of the caspase 3 mutants were solved and compared with that of wild-type. Significant alterations in the conformations of the L1 and L4 loops were found. These results indicate that the leucine residue on the L2 loop has an important role in maintaining the catalytic activity of caspases 3 and 7.  相似文献   

18.
The addition of 5',5',5'-trifluoroleucine (fluoroleucine) to leucine auxotrophs of Salmonella typhimurium permitted protein but not ribonucleic acid (RNA) synthesis to continue after leucine depletion. The uncoupling of the formation of these macromolecules by fluoroleucine was apparent if RNA and protein synthesis was measured either by the uptake of radioactive precursors or by direct chemical determinations. The analogue did not appear to be an inhibitor of RNA formation, since it was as effective as leucine in permitting RNA synthesis in a leucine auxotroph upon the addition of small amounts of chloramphenicol. In contrast to these data, fluoroleucine allowed continued protein and RNA formation in a leucine auxotroph of Escherichia coli strain W. In addition, contrary to the results obtained with S. typhimurium, the analogue replaced leucine for repression of the leucine bio-synthetic enzymes as well as the isoleucine-valine enzymes. We propose that these ambivalent effects of fluoroleucine on repression and RNA and protein synthesis in the two strains are due to differences in the ability of the analogue to attach to the various species of leucine transfer RNA.  相似文献   

19.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.  相似文献   

20.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号