首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haem (iron protoporphyrin IX) is both an essential growth factor and virulence regulator for the periodontal pathogen Porphyromonas gingivalis, which acquires it mainly from haemoglobin via the sequential actions of the R- and K-specific gingipain proteases. The haem-binding lipoprotein haemophore HmuY and its cognate receptor HmuR of P. gingivalis, are responsible for capture and internalisation of haem. This study examined the role of the HmuY in acquisition of haem from haemoglobin and the cooperation between HmuY and gingipain proteases in this process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to wrest haem from immobilised methaemoglobin and deoxyhaemoglobin. Haem extraction from oxyhaemoglobin was facilitated after oxidation to methaemoglobin by pre-treatment with the P. gingivalis R-gingipain A (HRgpA). HmuY was also capable of scavenging haem from oxyhaemoglobin pre-treated with the K-gingipain (Kgp). This is the first demonstration of a haemophore working in conjunction with proteases to acquire haem from haemoglobin. In addition, HmuY was able to extract haem from methaemalbumin, and could bind haem, either free in solution or from methaemoglobin, even in the presence of serum albumin.  相似文献   

2.
Abstract The R- and K-gingipain proteases of Porphyromonas gingivalis are involved in proteolysis of haemoglobin from which the defensive dimeric haem pigment is formed. Whilst oxyhaemoglobin is refractory towards K-gingipain, methaemoglobin is rapidly degraded. Ligation of methaemoglobin with N3-, which effectively blocks haem dissociation from the protein, prevented haemoglobin breakdown. Haem-free globin was rapidly degraded by K-gingipain. These data emphasise the need for haemoglobin oxidation which encourages haem dissociation and makes the haem-free globin susceptible to proteolytic attack.  相似文献   

3.
Porphyromonas gingivalis, an anaerobic gram-negative bacterium associated with chronic periodontitis, can agglutinate human erythrocytes. In general, hemagglutination can be considered the ability to adhere to host cells; however, P. gingivalis-mediated hemagglutination has special significance because heme markedly accelerates growth of this bacterium. Although a number of studies have indicated that a major hemagglutinin of P. gingivalis is intragenically encoded by rgpA, kgp, and hagA, direct evidence has not been obtained. We demonstrated in this study that recombinant HGP44(720-1081), a fully processed HGP44 domain protein, had hemagglutinating activity but that an unprocessed form, HGP44(720-1138), did not. A peptide corresponding to residues 1083 to 1102, which was included in HGP44(720-1138) but not in HGP44(720-1081), could bind HGP44(720-1081) in a dose-dependent manner and effectively inhibited HGP44(720-1081)-mediated hemagglutination, indicating that the interdomain regional amino acid sequence may function as an intramolecular suppressor of hemagglutinating activity. Analyses by solid-phase binding and chemical cross-linking suggested that HGP44 interacted with glycophorin A on the erythrocyte membrane. Glycophorin A and, more effectively, asialoglycophorin, which were added exogenously, inhibited HGP44(720-1081)-mediated hemagglutination. Treatment of erythrocytes with RgpB proteinase resulted in degradation of glycophorin A on the membrane and a decrease in HGP44(720-1081)-mediated hemagglutination. Surface plasmon resonance detection analysis revealed that HGP44(720-1081) could bind to asialoglycophorin with a dissociation constant of 3.0 x 10(-7) M. These results indicate that the target of HGP44 on the erythrocyte membrane appears to be glycophorin A.  相似文献   

4.
The periodontal pathogen Porphyromonas gingivalis is highly resistant to the bactericidal activity of human complement, which is present in the gingival crevicular fluid at 70% of serum concentration. All thirteen clinical and laboratory P. gingivalis strains tested were able to capture the human complement inhibitor C4b-binding protein (C4BP), which may contribute to their serum resistance. Accordingly, in serum deficient of C4BP, it was found that significantly more terminal complement component C9 was deposited on P. gingivalis. Moreover, using purified proteins and various isogenic mutants, we found that the cysteine protease high molecular weight arginine-gingipain A (HRgpA) is a crucial C4BP ligand on the bacterial surface. Binding of C4BP to P. gingivalis appears to be localized to two binding sites: on the complement control protein 1 domain and complement control protein 6 and 7 domains of the alpha-chains. Furthermore, the bacterial binding of C4BP was found to increase with time of culture and a particularly strong binding was observed for large aggregates of bacteria that formed during culture on solid blood agar medium. Taken together, gingipains appear to be a very significant virulence factor not only destroying complement due to proteolytic degradation as we have shown previously, but was also inhibiting complement activation due to their ability to bind the complement inhibitor C4BP.  相似文献   

5.
Porphyromonas gingivalis, an important periodontal disease pathogen, forms black-pigmented colonies on blood agar. Pigmentation is believed to result from accumulation of iron protoporphyrin IX (FePPIX) derived from erythrocytic hemoglobin. The Lys-X (Lys-gingipain) and Arg-X (Arg-gingipain) cysteine proteases of P. gingivalis bind and degrade erythrocytes. We have observed that mutations abolishing activity of the Lys-X-specific cysteine protease, Kgp, resulted in loss of black pigmentation of P. gingivalis W83. Because the hemagglutinating and hemolytic potentials of mutant strains were reduced but not eliminated, we hypothesized that this protease played a role in acquisition of FePPIX from hemoglobin. In contrast to Arg-gingipain, Lys-gingipain was not inhibited by hemin, suggesting that this protease played a role near the cell surface where high concentrations of hemin confer the black pigmentation. Human hemoglobin contains 11 Lys residues in the alpha chain and 10 Lys residues in the beta chain. In contrast, there are only three Arg residues in each of the alpha and beta chains. These observations are consistent with human hemoglobin being a preferred substrate for Lys-gingipain but not Arg-gingipain. The ability of the Lys-gingipain to cleave human hemoglobin at Lys residues was confirmed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of hemoglobin fragments resulting from digestion with the purified protease. We were able to detect several of the predicted hemoglobin fragments rendered by digestion with purified Lys-gingipain. Thus, we postulate that the Lys-gingipain of P. gingivalis is a hemoglobinase which plays a role in heme and iron uptake by effecting the accumulation of FePPIX on the bacterial cell surface.  相似文献   

6.
Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7   总被引:9,自引:5,他引:4  
In this study, we identified the iron-transport systems of Escherichia coli O157:H7 strain EDL933. This strain synthesized and transported enterobactin and had a ferric citrate transport system but lacked the ability to produce or use aerobactin. It used haem and haemoglobin, but not transferrin or lactoferrin, as iron sources. We cloned the gene encoding an iron-regulated haem-transport protein and showed that this E. coli haem-utilization gene ( chuA ) encoded a 69 kDa outer membrane protein that was synthesized in response to iron limitation. Expression of this protein in a laboratory strain of E. coli was sufficient for utilization of haem or haemoglobin as iron sources. Mutation of the chromosomal chuA and tonB genes in E. coli O157:H7 demonstrated that the utilization of haemin and haemoglobin was ChuA- and TonB-dependent. Nucleotide sequence analysis of chuA revealed features characteristic of TonB-dependentFur-regulated, outer membrane iron-transport proteins. It was highly homologous to the shuA gene of Shigella dysenteriae and less closely related to hemR of Yersinia enterocolitica and hmuR of Yersinia pestis . A conserved Fur box was identified upstream of the chuA gene, and regulation by Fur was confirmed.  相似文献   

7.
HasA is a haem-binding protein which is secreted under iron-deficiency conditions by the gram-negative bacterium Serratia marcescens. It is a monomer of 19 kDa (187 residues) able to bind free haem as well as to capture it from haemoglobin. HasA delivers haem to a specific outer-membrane receptor HasR and allows the bacteria to grow in the absence of any other source of iron. It is secreted by a signal peptide-independent pathway which involves a C-terminal secretion signal and an ABC (ATP-binding cassette) transporter. The C-terminal region of the secretion signal containing the essential secretion motif is cleaved during or after the secretion process by proteases secreted by the bacteria. In this work, we study by 1H NMR the conformation of the C-terminal extremity of HasA in the whole protein and that of the isolated secretion signal peptide in a zwitterionic micelle complex that mimicks the membrane environment. We identify a helical region followed by a random-coil C-terminus in the peptide-micelle complex and we show that in both the whole protein and the complex, the last 15 residues containing the motif essential for secretion are highly flexible and unstructured. This flexibility may be a prerequisite to the recognition of HasA by its ABC transporter. We determine the cleavage site of the C-terminal extremity of the protein and analyse the effect of the cleavage on the haem acquisition process.  相似文献   

8.
Several pH-dependent low-spin ferric haem forms are identified in a frozen solution of the ferric 121Cys→Ser mutant of Drosophila melanogaster haemoglobin (DmHb1*) using electron paramagnetic resonance (EPR) techniques. Different forms with EPR parameters typical of bis-histidine coordinated haem iron centers were observed. Strong pH-dependent changes in the EPR signatures were observed related to changes in the haem pocket. The pulsed EPR data indicate that both the distal and proximal histidine exhibit a large libration around the Fe-N(His) axis. The resonance Raman spectra of the CO-ligated ferrous form of Drosophila melanogaster haemoglobin are typical of an open conformation, with little stabilization of the CO ligand by the surrounding amino-acid residues. The EPR data of the cyanide-ligated ferric DmHb1* indicates a close similarity with cyanide-ligated ferric myoglobin. The structural characteristics of DmHb1* are found to clearly differ from those of other bis-histidine-coordinated globins.  相似文献   

9.
The arginine- and lysine-specific gingipains of Porphyromonas gingivalis have been implicated in the degradation of haemoglobin from which the black mu-oxo haem dimer-containing pigment is generated. Here, we examined interactions of oxyhaemoglobin (oxyHb) with the Arg-(R)-specific (HRgpA) and Lys-(K)-specific (Kgp) gingipains. Incubation of oxyHb with HRgpA resulted in formation of methaemoglobin (metHb), which could be prevented by the R-gingipain specific inhibitor leupeptin. oxyHb-Kgp interactions resulted in formation of a haemoglobin haemichrome. This was inhibited by the lysine-specific protease inhibitor Z-Phe-Lys-acyloxymethylketone (Z-FKck). metHb, formed by treatment of oxyHb with either NaNO(2) or by pre-incubation with HRgpA, was rapidly degraded by Kgp compared to oxyHb. metHb degradation by Kgp was also inhibited Z-FKck. Together these data show that R-gingipain activity is crucial for converting oxyHb into the metHb form which is rendered more susceptible to Kgp degradation for the eventual release of iron(III) protoporphyrin IX and production of the mu-oxo haem dimer. This explains previous observations [J.W. Smalley, M.F. Thomas, A.J. Birss, R. Withnall, J. Silver, Biochem. J. 379 (2004) 833-840.] of the requirement for a combination of both R- and K-gingipains for pigment production from oxyhaemoglobin by P. gingivalis.  相似文献   

10.
The cloning and sequencing of the gene encoding porphypain, a cysteine proteinase previously isolated from detergent extracts of the Porphyromonas gingivalis W12 cell surface, are described. The prtP gene encoded a unique protein of 1,732 amino acids, including a putative signal sequence for protein secretion. The predicted molecular mass for the mature protein was 186 kDa, which was close to the observed molecular mass of 180 kDa. There was one copy of prtP in the genomes of seven P. gingivalis strains examined. The gene was located 5' to a region with a high degree of homology to the insertion element IS1126 in P. gingivalis W12. The PrtP protein had regions of high homology to HagA, a hemagglutinin of P. gingivalis, and to several purported proteinases of P. gingivalis that have Arg-X specificity. A detailed comparison of genes encoding the latter and cpgR suggested that rgp-1, prpR1, prtR, agp, cpgR, and possibly prtH were derived from identical genetic loci. Although an rgp-1-like locus was detected in seven P. gingivalis strains by Southern blot analyses, agp and cpgR were not detected, not even in the strains from which they were originally isolated. In addition, at least 20 copies of a repeat region common to PrtP, the Rgp-1-like proteins, and HagA were observed in each of the seven genomes examined. The repeat region hybridization patterns for strains W83 and W50 were very similar, and they were identical for strains 381 and ATCC 33277, providing further evidence that these strains are closely related genetically.  相似文献   

11.
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.  相似文献   

12.
Porphyromonas gingivalis possesses a hemoglobin receptor (HbR) protein on the cell surface as one of the major components of the hemoglobin utilization system in this periodontopathogenic bacterium. HbR is intragenically encoded by the genes of an arginine-specific cysteine proteinase (rgpA), lysine-specific cysteine proteinase (kgp), and a hemagglutinin (hagA). Here, we have demonstrated that human lactoferrin as well as hemoglobin have the abilities to bind purified HbR and the cell surface of P. gingivalis through HbR. The interaction of lactoferrin with HbR led to the release of HbR from the cell surface of P. gingivalis. This lactoferrin-mediated HbR release was inhibited by the cysteine proteinase inhibitors effective to the cysteine proteinases of P. gingivalis. P. gingivalis could not utilize lactoferrin for its growth as an iron source and, in contrast, lactoferrin inhibited the growth of the bacterium in a rich medium containing hemoglobin as the sole iron source. Lactoferricin B, a 25-amino acid-long peptide located at the N-lobe of bovine lactoferrin, caused the same effects on P. gingivalis cells as human lactoferrin, indicating that the effects of lactoferrin might be attributable to the lactoferricin region. These results suggest that lactoferrin has a bacteriostatic action on P. gingivalis by binding HbR, removing it from the cell surface, and consequently disrupting the iron uptake system from hemoglobin.  相似文献   

13.
Humans and rats infected with P. gingivalis develop a strong immune response to a 75 kDa major membrane component of P. gingivalis and hence knowledge of the nature of this molecule may aid in understanding the host response to P. gingivalis during infection. Purification of the 75 kDa protein was achieved by repeated precipitation from a crude sonicate of P. gingivalis 2561 at pH 5.0. Homogeneity of the purified 75 kDa protein was confirmed by SDS-PAGE and Western immunoblot analysis using monoclonal and polyclonal antibodies. The purified protein revealed an apparent molecular mass of 300 kDa in native form. Although most of the strains of P. gingivalis tested showed a major membrane protein band in the range of 61 to 78 kDa, on Western immunoblot analysis only the strains which have proteins in the range of 75 to 78 kDa were reactive with anti-75 kDa protein polyclonal antibodies. Affinity purified polyclonal antibodies were used to localized 75 kDa protein on the cell surface of P. gingivalis 2561 by immunogold electron microscopy. Immunolabeling of the 75 kDa protein demonstrated specific localization of the protein along the outer cell membrane, but not on the fimbriae. Furthermore, immunogold labeling of the 75 kDa protein on the thin sections showed that the 75 kDa component was present on not only the outer membrane, but also on the cell membrane, and on membrane bound organelles. Localization of this protein suggests that the 75 kDa component is a membrane-associated protein.  相似文献   

14.
15.
Hinode D  Grenier D  Mayrand D 《Anaerobe》1995,1(5):283-290
Heat-shock proteins of Porphyromonas gingivalis were demonstrated and two of them were purified and further characterized. The amplified de novo synthesis of two different proteins, with apparent molecular weights of 75 kDa and 68 kDa, was observed by autofluorography when a P. gingivalis culture incubated in a 14C-labeled amino acid mixture was shifted from 37 degrees C to 44 degrees C. Both proteins possessed ATP-binding abilities and were purified to almost homogeneity employing affinity chromatography on ATP-agarose followed by preparative SDS-PAGE. Purified 75 kDa and 68 kDa proteins had isoelectric points of 4.4 and 4.6, respectively. They were shown to be immunoreactive with commercial anti-DnaK and anti-GroEL polyclonal antibodies, respectively. Immunoblotting analysis of whole cells using antiserum raised against each purified protein from P. gingivalis, confirmed elevated synthesis of both proteins during thermal shock. A GroEL protein reacted strongly with antiserum against the 68 kDa protein. However, a DnaK protein reacted weakly with antiserum to the 75 kDa protein. Analysis of the N-terminal amino acid sequence of the DnaK-like protein (75 kDa) showed a high degree of homology with those of the HSP70 family including both prokaryotic and eukaryotic cells. The N-terminal amino acid analysis of the GroEL-like protein (68 kDa) indicated that it was identical to those of cloned GroEL homologues from P. gingivalis.  相似文献   

16.
Porphyromonas gingivalis, and organism implicated in the etiology and pathogenesis of human periodontal diseases, produces a variety of potent proteolytic enzymes, and it has been suggested that these enzymes play a direct role in the destruction of periodontal tissues. We now report that two cell-associated cysteine proteinases of P. gingivalis W12, with molecular masses of approximately 150 kDa (porphypain-1) and 120 kDa (porphypain-2), as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, have been separated and purified to apparent homogeneity. These proteinases appear to be SDS-stable conformational variants of a 180-kDa enzyme, and they are the largest cysteine proteinases yet purified from P. gingivalis. The purified proteinases hydrolyze fibrinogen, tosyl-Gly-L-Pro-L-Arg p-nitroanilide, and tosyl-Gly-L-Pro-L-Lys p-nitroanilide. While hydrolysis of both synthetic substrates by porphypain-1 and -2 requires activation by reducing agents, is inhibited by EDTA, and is stimulated in the presence of derivatives of glycine, the Arg-amidolytic activity is sensitive to leupeptin and H-D-tyrosyl-L-prolyl-L-arginyl chloromethyl ketone, whereas the Lys-amidolytic activity is sensitive to tosyl-L-lysyl chloromethyl ketone and insensitive to leupeptin. These data suggest that porphypains contain two types of active sites. These cell-associated P. gingivalis proteinases may contribute significantly and directly to periodontal tissue destruction.  相似文献   

17.
Peroxide-induced oxidative modifications of haem proteins such as myoglobin and haemoglobin can lead to the formation of a covalent bond between the haem and globin. These haem to protein cross-linked forms of myoglobin and haemoglobin are cytotoxic and have been identified in pathological conditions in vivo. An understanding of the mechanism of haem to protein cross-link formation could provide important information on the mechanisms of the oxidative processes that lead to pathological complications associated with the formation of these altered myoglobins and haemoglobins. We have re-examined the mechanism of the formation of haem to protein cross-link to test the previously reported hypothesis that the haem forms a covalent bond to the protein via the tyrosine 103 residue (Catalano, C. E., Choe, Y. S., Ortiz de Montellano, P. R., J. Biol. Chem. 1989, 10534 - 10541). Comparison of native horse myoglobin, recombinant sperm whale myoglobin and Tyr(103) --> Phe sperm whale mutant shows that, contrary to the previously proposed mechanism of haem to protein cross-link formation, the absence of tyrosine 103 has no impact on the formation of haem to protein cross-links. In contrast, we have found that engineered myoglobins that lack the distal histidine residue either cannot generate haem to protein cross-links or show greatly suppressed levels of modified protein. Moreover, addition of a distal histidine to myoglobin from Aplysia limacina, that naturally lacks this histidine, restores the haem protein's capacity to generate haem to protein cross-links. The distal histidine is, therefore, vital for the formation of haem to protein cross-link and we explore this outcome.  相似文献   

18.
Deferoxamine (DFO), an FDA-approved iron chelator used for treatment of iron poisoning, affects bacteria as iron availability is intimately connected with growth and several virulence determinants. However, little is known about the effect on oral pathogens. In this study, the effect of DFO on Porphyromonas gingivalis, a major periodontopathogen which has an essential growth requirement for hemin (Fe(3+)-protoporphyrin IX), was evaluated. The viability of P. gingivalis W83 was not affected by 0.06-0.24 mM DFO, whereas the doubling time of the bacterium was considerably prolonged by DFO. The inhibitory effect was evident at earlier stages of growth and reduced by supplemental iron. UV-visible spectra using the pigments from P. gingivalis cells grown on blood agar showed that DFO inhibited μ-oxo bisheme formation by the bacterium. DFO decreased accumulation and energy-driven uptake of hemin by P. gingivalis. Antibacterial effect of H(2)O(2) and metronidazole against P. gingivalis increased in the presence of DFO. Collectively, DFO is effective for hemin deprivation in P. gingivalis suppressing the growth and increasing the susceptibility of the bacterium to other antimicrobial agents such as H(2)O(2) and metronidazole. Further experiments are necessary to show that DFO may be used as a therapeutic agent for periodontal disease.  相似文献   

19.
T Suzuki  T Takagi    S Ohta 《The Biochemical journal》1990,266(1):221-225
The deep-sea tube worm Lamellibrachia, belonging to the Phylum Vestimentifera, contains two giant extracellular haemoglobins, a 3000 kDa haemoglobin and a 440 kDa haemoglobin. The former consists of four haem-containing chains (AI-AIV) and two linker chains (AV and AVI) for the assembly of the haem-containing chains [Suzuki, Takagi & Ohta (1988) Biochem. J. 255, 541-545]. The tube-worm haemoglobins are believed to have a function of transporting sulphide (H2S) to internal bacterial symbionts, as well as of facilitating O2 transport [Arp & Childress (1983) Science 219, 295-297]. We have determined the complete amino acid sequence of Lamellibrachia chain AIII by automated or manual Edman sequencing. The chain is composed of 144 amino acid residues, has three cysteine residues at positions 3, 74 and 133, and has a molecular mass of 16,620 Da, including a haem group. The sequence showed significant homology (30-50% identity) with those of haem-containing chains of annelid giant haemoglobins. Two of the three cysteine residues are located at the positions where an intrachain disulphide bridge is formed in all annelid chains, but the remaining one (Cys-74) was located at a unique position, compared with annelid chains. Since the chain AIII was shown to have a reactive thiol group in the intact 3000 kDa molecule by preliminary experiments, the cysteine residue at position 74 appears to be one of the most probable candidates for the sulphide-binding sites. A phylogenetic tree was constructed from nine chains of annelid giant haemoglobins and one chain of vestimentiferan tube-worm haemoglobin now determined. The tree clearly showed that Lamellibrachia chain AIII belongs to the family of strain A of annelid giant haemoglobins, and that the two classes of Annelida, polychaete and oligochaete, and the vestimentiferan tube worm diverged at almost the same time. H.p.l.c. patterns of peptides (Figs. 4-7), amino acid compositions of peptides (Table 2) and amino acid sequences of intact protein and peptides (Table 3) have been deposited as Supplementary Publication SUP 50154 (13 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1990) 265, 5.  相似文献   

20.
In a search for a basic carboxypeptidase that might work in concert with the major virulence factors, the Arg- and Lys-specific cysteine endoproteinases of Porphyromonas gingivalis, a novel 69.8-kDa metallocarboxypeptidase CPG70 was purified to apparent homogeneity from the culture fluid of P. gingivalis HG66. Carboxypeptidase activity was measured by matrix-assisted laser desorption ionization-mass spectrometry using peptide substrates derived from a tryptic digest of hemoglobin. CPG70 exhibited activity with peptides containing C-terminal Lys and Arg residues. The k(cat)/K(m) values for the hydrolysis of the synthetic dipeptides FA-Ala-Lys and FA-Ala-Arg by CPG70 were 99 and 56 mm(-1)s(-1), respectively. The enzyme activity was strongly inhibited by the Arg analog (2-guanidinoethylmercapto)succinic acid and 1,10-phenanthroline. High resolution inductively coupled plasma-mass spectrometry demonstrated that 1 mol of CPG70 was associated with 0.6 mol of zinc, 0.2 mol of nickel, and 0.2 mol of copper. A search of the P. gingivalis W83 genomic data base (TIGR) with the N-terminal amino acid sequence determined for CPG70 revealed that the enzyme is an N- and C-terminally truncated form of a predicted 91.5-kDa protein (PG0232). Analysis of the deduced amino acid sequence of the full-length protein revealed an N-terminal signal sequence followed by a pro-segment, a metallocarboxypeptidase catalytic domain, three tandem polycystic kidney disease domains, and an 88-residue C-terminal segment. The catalytic domain exhibited the highest sequence identity with the duck metallocarboxypeptidase D domain II. Insertional inactivation of the gene encoding CPG70 resulted in a P. gingivalis isogenic mutant that was avirulent in the murine lesion model under the conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号