首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular Sieving by the Bacillus megaterium Cell Wall and Protoplast   总被引:46,自引:25,他引:21       下载免费PDF全文
Passive permeabilities of the cell wall and protoplast of Bacillus megaterium strain KM were characterized by use of 50 hydrophilic probing molecules (tritiated water, sugars, dextrans, glycols, and polyglycols) which varied widely in size. Weight per cent uptake values (R(w)) were measured at diffusional equilibrium under conditions that negated the influences of adsorption or active transport. Plots of R(w) for intact cells as a function of number-average molecular weight ( M(n)) or Einstein-Stokes hydrodynamic radius ( r(ES)) of the solutes showed three phases: a protoplast uptake phase with a polydisperse exclusion threshold of M(n) = 0.6 x 10(3) to 1.1 x 10(3), r(ES) = 0.6 to 1.1 nm; a cell wall uptake phase with a polydisperse exclusion threshold of M(n) = 0.7 x 10(5) to 1.2 x 10(5), r(ES) congruent with 8.3 nm; and a total exclusion phase. Isolated cell walls showed only the latter two phases. However, it became evident that the cell wall selectively passed only the smallest molecules in a heterodisperse polymer sample. When the molecular-weight distributions of polyglycol samples ( M(n) = 1,000, 1,450, and 3,350) were determined by analytical gel chromatography before and after uptake by intact cells or isolated cell walls, a quasi-monodisperse exclusion threshold was obtained corresponding to M(n) = 1,200, r(ES) = 1.1 nm. The permeability of isolated protoplasts was assessed by the relative ability of solutes to effect osmotic stabilization. An indefinite exclusion threshold, evident even with monodisperse sugars, was attributed to lengthwise orientation of the penetrating rod-shaped molecules. Altogether, the best estimate of the limiting equivalent porosity of the protoplast was 0.4 to 0.6 nm in radius and of the cell wall, 1.1 nm.  相似文献   

2.
Macromolecular Sieving by the Dormant Spore of Bacillus cereus   总被引:4,自引:3,他引:1       下载免费PDF全文
The threshold surface porosity in the dormant spore of Bacillus cereus strain T was assessed by measuring passive permeabilities to a series of polydisperse polyethylene glycol samples which increased in average molecular size. The apparent exclusion threshold at diffusional equilibrium corresponded to a polymer of number-average molecular weight ( M(n)) = 150,000 and equivalent hydrodynamic radius ( r(ES)) = 16 nm, which confirmed a previous report. However, analytical gel chromatography before and after uptake by the spores revealed that only the low molecular weight fractions in a polymer sample distribution were taken up. From graphical analyses of the changes in molecular weight distributions, a quasi-monodisperse exclusion threshold was determined corresponding to M(n) = 8,000 and r(ES) = 3.2 nm. Thus, the equivalent porosity in the limiting outer integument appeared much more restrictive than heretofore shown for spores, although still more open than the monodisperse equivalent for the cell wall of vegetative bacilli.  相似文献   

3.
Determination of pore size of the cell wall of Chara corallina has been made by using the polyethylene glycol (PEG) series as the hydrophilic probing molecules. In these experiments, the polydispersity of commercial preparation of PEGs was allowed for. The mass share (gamma(p)) of polyethylene glycol preparation fractions penetrating through the pores was determined using a cellular 'ghost', i.e. fragments of internodal cell walls filled with a 25% solution of non-penetrating PEG 6000 and tied up at the ends. In water, such a 'ghost' developed a hydrostatic pressure close to the cell turgor which persisted for several days. The determination of gamma(p), for polydisperse polyethylene glycols with different average molecular mass (M) was calculated from the degree of pressure restoration after water was replaced by a 5-10% polymer solution. Pressure was recorded using a dynamometer, which measures, in the quasi-isometric mode, the force necessary for the partial compression of the 'ghost' in its small fragment. By utilizing the data on the distribution of PEG 1000, 1450, 2000, and 3350 fractions over molecular mass (M), it was found that gamma(p), for these polyethylene glycols corresponded to the upper limit of ML=800-1100 D (hydrodynamic radius of molecules, r(h)=0.85-1.05 nm). Thus, the effective diameter of the pores in the cell wall of Chara did not exceed 2.1 nm.  相似文献   

4.
Measurement of free space and sorption of large molecules by cereal roots   总被引:1,自引:0,他引:1  
Abstract. Large molecular weight solutes that do not penetrate the root have been used to correct for the surface film in measurements with mannitol of the volume of the Apparent Free Space (FS) in bailey roots. The results are compared with those obtained using other correction techniques for elimination of the surface film. Large molecules seem to be adsorbed on the root surface and the kinetics of adsorption differ between the polyhydric alcohol mannitol or the polysaccharide dextran on the one hand, and the polyether polyethylene glycol (PEG-4000) on the other. The significance of this difference in kinetics is discussed in relation to the use of PEG as an osmoticum in studies on root water relations and its effect on ion uptake. Although smaller molecular weight PEG's penetrate the FS and diminish sodium uptake from 10 mol m−3 NaCl, more dilute solutions of mannitol and larger PEG polymers are unlikely to affect ion uptake from dilute nutrient solutions. Use of these substances along with labelled nutrients in kinetic studies of the compartmentation of ions in roots can help to distinguish between ions associated with the surface film, those in the FS and those that have crossed the cell membranes into the protoplast.  相似文献   

5.
We have previously demonstrated the ability of electric fields to dissociate ascorbate and catecholamines and shown that the electric field generated by cell membranes is sufficient to produce dissociation of these complexes up to 8 nm from the cell membrane. We show here that this process is applicable to a wide range of biological complexes including small molecules (norepinephrine-morphine sulfate), protein-protein complexes (insulin-glucagon), and small molecule-protein complexes (epinephrine-bovine serum albumin). The extrapolation of the slope of the electric field dependence to zero electric field can be used to estimate the log of the dissociation constant (K(D)) of a complex and, by multiplying the log(K(D)) by -2.303RT, the association energy (E) of the complex. The slope of the electric field dependence is inversely related to the molecular radii, with the best fit of the slope related to E*(1/r1 + 1/r2), where r is the estimated radius of each molecule in the complementary pair. This indicates that the binding site of the pair is shielded by the remaining parts of the molecules, and the larger the molecule the greater the shielding. When the slope of the electric field dependence goes to 0 as r goes to infinity and 1/r goes to 0, the molecular shielding constant is 7.04 x 10(-8) cm2/V. Very large complexes will be minimally affected by the electric field due to molecular shielding and reduced electric field as their radius restricts approach to the membrane. Large protein receptors will deflect the membrane electric field and allow agonist binding.  相似文献   

6.
A method of allowing for polydispersion of polyethylene glycol (PEG) preparations was developed for the use of these preparations for the osmometrical evaluation of pore diameters with aqueous pores of Chara corallina cell walls as an example. The mass share of polyethylene glycol preparation fractions gamma p penetrating through the pores was determined using cellular "shadows", fragments of internodal cell walls tied up at the ends and filled with a 25% solution of nonpenetrating PEG 6000. When immersed into water, such "shadow" acquired a turgor (hydrostatic) pressure close to the cellular pressure and persistent over long time. The determination of gamma p for polyethylene glycols with different average molecular weights Mw was performed from the degree of pressure restoration after water was replaced by a 5-10% polymer solution. The kinetics of pressure changes was recorded using a mechanotronic dynamometer, which measures, in the quasi-isometric mode, the force necessary for partial compression of the "shadow" in its small fragment. By utilizing the dependence of the overall share of fractions with molecular weights Mi < Mk on Mk (data of [1]), we found that gamma p, for these polyethylene glycols corresponds to the threshold value of Mk = 800-1100 D (hydrodynamic radius of molecules rh = 0.85-1.05 nm). Thus, the effective diameter of the pores in the cell wall of Chara does not exceed 2.1 nm. It was shown that the smoothness of the sigmoid shape of the dependence of ionic channel conductivity on the Mw value of the polymer in the media is largely due to the polydispersion of polymer preparations, particularly, to the reduction in the share of fractions penetrating the channels as Mw is increased. The method normally used to estimate pore diameters in ionic channels which ignores the dispersion of polymer preparations, results in overestimated values.  相似文献   

7.
Changes in the limiting porosity of cell walls, i.e. the size limit for permeation of neutral molecules through the wall, were studied in several higher-plant cell-suspension cultures. For this purpose, samples of biomass fixed at different cultivation times were investigated using a method based on size-exclusion chromatography of polydisperse dextrans before and after equilibration with the extracted cell clusters. In suspension cultures of Chenopodium album L., Dioscorea deltoidea Wall. and Medicago sativa L., the mean size limit (MSL; critical Stokes' radius for exclusion of neutral polymers from half of the intracellular space) was found to vary between 2.4 and 3.8 nm. It decreased significantly during transition from the growth phase to the stationary phase. In the case of the C. album culture this change was found to be irrespective of whether sucrose in the medium was completely depleted at the end of the growth phase or not. The MSL was kept constant for long periods of the stationary phase if cell viability was maintained by repeated sucrose supplement. In a suspension strain of Triticum aestivum L., the MSL of cell wall permeation was comparatively small (1.75 nm) and remained constant during all cultivation phases. Relations between limiting porosity and cell wall growth, loss of pectic compounds to the medium, cross-linking activities and cell wall stiffening are discussed. Received: 19 December 1996 / Accepted: 23 April 1997  相似文献   

8.
Hexachlorophene is a soap-compatible bisphenol that has been widely used as an antiseptic, yet its mechanism of action is undefined. The relative threshold concentration for bactericidal effect on a susceptible test organism, Bacillus megaterium, was established to be about 10 mug/mg of cell dry weight. At this or at high (>/=100 mug/mg) concentration, adsorptive uptake by cells displayed saturation kinetics. At about 30 mug/mg, the time course of adsorption occurred in three distinct stages. The triphasic pattern was interpreted to represent successive penetration of and adsorption by the cell wall, the protoplast membrane, and the cytoplasm. This interpretation was substantiated by determinations of hexachlorophene adsorption by isolated cell components. Electron microscopy disclosed cytopathology, evidenced as gaps or discontinuities, in the protoplast membrane (but not in the cell wall or cytoplasm) at > 30 mug of hexachlorophene per mg of cell dry weight. Similarly, treatment with > 30 mug/mg allowed a fluorescigenic dye (tolyl-peri acid) to penetrate into the protoplast. However, no detectable cytological manifestations were discerned at the minimum lethal concentration of 10 mug/mg. Apparently, hexachlorophene is physically disruptive at intermediate or high relative concentrations but acts in a more subtle fashion at the minimal lethal concentration.  相似文献   

9.
Tripartite sporopollenin microcapsules prepared from pine pollen (Pinus sylvestris L. and Pinus nigra Arnold) were analysed with respect to the permeability of the different strata of the exine which surround the gametophyte and form the sacci. The sexine at the surface of the sacci is highly permeable for polymer molecules and latex particles with a diameter of up to 200 nm, whereas the nexine covering the gametophyte is impermeable for dextran molecules, with a Stokes' radius > or =4 nm (Dextran T 70), and for the tetravalent anionic dye Evans Blue (Stokes' radius = 1.3 nm). The central capsules obtained by dissolution of the sporoplasts showed strictly membrane-controlled exchange of non-electrolytes, with half-equilibration times in the range of minutes (monosaccharides, oligosaccharides) to hours (dextran molecules with Stokes' radii up to 2.5 nm). The dependence of the permeability coefficients of the nexine for non-electrolytes on Stokes' radius or molecular weight shows that the aqueous pores through the nexine are inhomogeneous with respect to their size, and that most pores are too narrow for free diffusion of sugar molecules. To explain the barrier function of the nexine for Evans Blue, it is assumed that at least the larger pores, which enable slow permeation of dextran molecules, contain negative charges.  相似文献   

10.
A hypothesis is proposed that the passage of exoenzymes through cell walls occurs more easily through the more plastic and porous nascent cell wall, e. g., the apical region of fungal hyphae. It also accounts for the occurrence of some exoenzymes in cell walls. As the porous and nascent apical wall of fungi is transformed to the less porous lateral wall during growth, some exoenzymes are trapped in transit, thus becoming bound into the wall. Enzymes with binding sites in the wall are not considered in the hypothesis. Several experimental tests performed on Neurospora crassa yield results consistent with its predictions: 1. under selected growth conditions, a group of three exoenzymes of high molecular weight has a significantly higher percent of the total cellular enzyme activity in the wall fraction than another group of three exoenzymes of low molecular weight; this complies with the prediction that larger molecules are more easily trapped in transit, 2. during germ tube outgrowth and early log phase, when the relative amount of surface area occupied by hyphal tips is larger than in older cultures, there is decreased molecular sieving of secreted exoenzymes as judged by a) a smaller proportion of the secreted invertase, comprising light invertase (mol wt=51,500) and heavy invertase (mol wt=210,000), being in the light form, and b) a larger amount of proteins with molecular weights over 40,000 than those of 20,000–40,000 in the culture filtrate. Some of the possible applications of the hypothesis to other microorganisms are discussed.  相似文献   

11.
Goh KK  Pinder DN  Hall CE  Hemar Y 《Biomacromolecules》2006,7(11):3098-3103
Polysaccharides isolated from flaxseed meals using ethanol consisted of a soluble ( approximately 7.5% w/w) and an insoluble fraction (2% w/w). The soluble fraction was dialyzed in various salt concentrations and characterized using viscometry and light scattering techniques. Observations using a size-exclusion column coupled to a multiangle laser light scattering (SEC-MALLS) revealed three molecular weight fractions consisting of a small amount ( approximately 17%) of large molecular weight species (1.0 x 10(6)) and a large amount ( approximately 69%) of small molecular weight species (3.1 x 10(5) Da). Dynamic light scattering measurements indicated the presence of very small molecules (hydrodynamic radius approximately 10 nm) and a very large molecular species (hydrodynamic radius in excess of 100 nm); the latter were probably aggregates. The intrinsic viscosity, [eta], of the polysaccharide in Milli-Q water was 1030 +/- 20 mL/g. The viscosity was due largely to the large molecular weight species since viscosity is influenced by the hydrodynamic volume of molecules in solution. The Smidsrod parameter B obtained was approximately 0.018, indicating that the molecules adopted a semi-flexible conformation. This was also indicated by the slope ( approximately 0.56) from the plot of root-mean-square (RMS) radius versus molar mass (M(w)).  相似文献   

12.
A gradient of development consisting of successive zones of cell division, cell elongation and cell maturation occurs along the longitudinal axis of elongating leaf blades of tall fescue (Festuca arundinacea Schreb.), a C3 grass. An increase in specific leaf weight (SLW; dry weight per unit leaf area) in the maturation region has been hypothesized to result from deposition of secondary cell walls in structural tissues. Our objective was to measure the transverse cell wall area (CWA) associated with the increase in SLW, which occurs following the cessation of leaf blade elongation at about 25 mm distal to the ligule. Digital image analysis of transverse sections at 5, 15, 45, 75 and 105 mm distal to the ligule was used to determine cell number, cell area and protoplast area of structural tissues, namely fibre bundles, mestome sheaths and xylem vessel elements, along the developmental gradient. Cell diameter, protoplast diameter and area, and cell wall thickness and area of fibre bundle cells were calculated from these data. CWA of structural tissues increased in sections up to 75 mm distal to the ligule, confirming the role of cell wall deposition in the increase in SLW (r2 = 0.924; P < or = 0.01). However, protoplast diameter of fibre cells did not decrease significantly as CWA increased, although mean thickness of fibre cell walls increased by 95 % between 15 and 105 mm distal to the ligule. Therefore, secondary cell wall deposition in fibre bundles of tall fescue leaf blades resulted in continued radial expansion of fibre cells rather than in a decrease in protoplast diameter.  相似文献   

13.
Internalisation of cell-penetrating peptides into tobacco protoplasts   总被引:1,自引:0,他引:1  
Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.  相似文献   

14.
Helix pomatia beta-haemocyanin was split into dissociation products by varying the pH and the ionic strength. The purity of the solution was checked in an ultracentrifuge. Two defined dissociation products were studied in solution by small-angle X-ray scattering. In Tris-HC1 buffer, pH 8.0 and ionic strength 1 M, the following parameters of the dissociation product (tenths) could be determined: molecular weight = 7 x 10(5), volume = 1350 nm3, radius of gyration = 9.0 nm, maximal distance = 28.3 nm, radius of the spherical subunits about 2.6 nm, number of the subunits approximately 19. Tris-HC1 buffer, pH 8.7 and ionic strength 0.01 M, yielded dissociation products (twentieths) with the following parameters: molecular weight = 3.5 x 10(5), volume = 635 nm3, radius of gyration = 7.5 nm, maximal distance = 21.9 nm, radius of the spherical subunits about 2.5 nm. With this information, the assumption that the larger fragment was double the smaller one and the latest biochemical and morphological results, theoretical scattering curves of models were calculated and compared with the experimental curves. Two models are suggested which argee well with the dissociation products in radius of gyration and scattering.  相似文献   

15.
Yamada Y  Hara Y  Katagi H  Senda M 《Plant physiology》1980,65(6):1099-1102
The relation between the composition of the phospholipid molecular species in a cell membrane and the velocity of protoplast fusion was studied using cells cultured at a low temperature (10 C). Cells cultured at a low temperature contained larger proportions of phospholipids of low phase transition point, the 1,2-dilinoleoyl-type, than those cultured at a normal temperature (25 C). When treated with polyethylene glycol 6000, protoplasts from cells cultured at 10 C fused and progressed to the fused sphere stage more rapidly than did those from cells cultured at 25 C.  相似文献   

16.
The micellization behavior of a diblock copolymer comprising a highly hydrophilic and biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) corona-forming block and a pH-sensitive poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core-forming block (PMPC-b-PDPA) has been studied by static and dynamic light scattering (SDLS), transmission electron microscopy (TEM), and potentiometry. Self-assembly of PMPC-b-PDPA copolymers with two different DPA volume fractions (phi(DPA)) leads to narrowly distributed and structurally distinct spherical micelles, as evidenced by their molecular weight (M(w,mic)), aggregation number (N(agg)), hydrodynamic radius (R(H)), corona width (W), and core radius (R(c)). The excellent potential of these pH-responsive micelles as nanosized drug delivery vehicles was illustrated by the encapsulation of dipyridamole (DIP), a model hydrophobic drug that dissolves in acid solutions and becomes insoluble above pH 5.8, which is comparable to the pK(a) of the PDPA block. The influence of micelle structure (namely M(w,mic), N(agg), R(H), W, and R(c)) on drug loading content, drug loading efficiency, partition coefficient, and release kinetics was investigated and confirmed by fluorescence spectroscopy studies. The maximum dipyridamole loadings within PMPC(30)-b-PDPA(30) (R(H) = 14.0 nm; W = 4.8 nm; R(c) = 9.2 nm) and PMPC(30)-b-PDPA(60) (R(H) = 27.1 nm; W = 11.0 nm; R(c) = 16.1 nm) micelles were 7 and 12% w/w(p), respectively. This preferential solubilization of DIP into micelles formed by copolymer chains having longer core-forming blocks (i.e., possessing larger core volumes) reflects the larger partition coefficient (K(V)) of DIP between the aqueous phase and PMPC(30)-b-PDPA(60) micelles (K(V) = 5.7 x 10(4)) compared to PMPC(30)-b-PDPA(30) micelles (K(V) = 1.1 x 10(4)). This enhanced ability of PMPC(30)-b-PDPA(60) aggregates to entrap/stabilize small hydrophobic molecules also produces slower release kinetics. Rapid release can be triggered by lowering the pH to induce micellar dissociation.  相似文献   

17.
A method has been developed for introducing plasmid DNA into Bacillus brevis 47, a protein-secreting bacterium. Treatment of B. brevis 47 cells with 50 mM Tris-hydrochloride buffer of alkaline pH was effective for inducing DNA uptake competence. In the presence of polyethylene glycol, the Tris-treated cells incorporated plasmid DNA with a frequency of 10(-4) (transformants per viable cell) when 1 microgram of plasmid DNA was added to 10(9) Tris-treated cells. The pH of Tris-hydrochloride buffer as well as the concentration and molecular weight of the polyethylene glycol affected the transformation frequency. The growth phase of B. brevis 47 cells strongly influenced the frequency. Two plasmids, pHW1 and pUB110, have been introduced into B. brevis 47 by this method. The mechanism of induction of competence for DNA uptake in connection with removal of the outer two protein layers of the cell wall by treatment of B. brevis 47 cells with Tris-hydrochloride buffer is discussed.  相似文献   

18.
Malate synthase from baker's yeast has been investigated in solution by the small-angle X-ray scattering technique. Size, shape and structure of the native substrate-free enzyme and of various enzyme-substrate complexes have been determined. As the enzyme was found to be rather unstable against X-rays, several precautions as well as sophisticated evaluation procedures had to be adopted to make sure that the results were not influenced by radiation damage. These included use of low primary intensity, short time of measurement, the presence of high concentrations of dithiothreitol, combined use of the conventional slit-collimation system and the new cone-collimation system. 1. For the native substrate-free enzyme the following molecular parameters could be established: radius of gyration R = 3.96 +/- 0.02 nm, maximum particle diameter D = 11.2 +/- 0.6 nm, radius of gyration of the thickness Rt = 1.04 +/- 0.04 nm, molecular weight Mr = 187000 +/- 3000, correlation volume Vc = 338 +/- 5 nm3, hydration x = 0.35 +/- 0.02 g/g, mean intersection length - l = 5.0 +/- 0.2 nm. Comparison of the experimental scattering curve with theoretical curves for various models showed that the enzyme is equivalent in scattering to an oblate ellipsoid of revolution rather than to a circular cylinder. The semiaxes of this ellipsoid are a = b = 6.06 nm and c = 2.21 nm. Thus with an axial ratio of about 1:0.36 the enzyme is of very anisometric shape. 2. Binding of the substrates (acetyl-CoA, glyoxylate) or the substrate analogue pyruvate causes slight structural changes of the enzyme. These changes are reflected mainly by a slight decrease of the radius of gyration (0.3--1.3%, as established both with the slit-smeared and the desmeared curves). Concomitantly there occurs a decrease of the maximum particle diameter and an increase of the radius of gyration of the thickness. These changes imply an increase of the axial ratio by 2.2--6.9%, i.e. substrate binding induces a decrease of anisometry. While the particle volume appears to be unchanged on binding glyoxylate or its analogue pyruvate, binding of acetyl-CoA causes slight changes of this parameter. In a similar manner the binding of acetyl-CoA leads to a slight enhancement of the molecular weight; this increase corresponds to the binding of 2.7 +/- 1 molecules of acetyl-CoA.  相似文献   

19.
Naturally occurring cross-links in yeast chromosomal DNA.   总被引:22,自引:0,他引:22  
M A Forte  W L Fangman 《Cell》1976,8(3):425-431
Chromosome-size yeast DNA molecules with a number average molecular weight (Mn) of 3-4 X 10(8) were isolated from sucrose gradients after sedimentation of lysed yeast spheroplasts. Resedimentation showed that the molecules were isolated without introducing appreciable single-strand or double-strand breaks. The presence of cross-links in these molecules was suggested by the observation that the apparent Mn in alkali was greater than expected for separated single strands. Since cross-linked molecules would have strands which fail to separate upon denaturation, this was tested more directly. Neutralization of alkaline denaturing conditions resulted in up to 70% of the intact molecules rapidly reforming duplex structures, as shown by equilibrium banding in CsCI. Experiments with larger E. coli DNA molecules (Mn = 5.2 X 10(8)) indicated that the conditions used were sufficient to denature completely molecules of this size. Results of enzyme treatments suggest that the cross-links are not RNA or protein. Experiments with density-labeled yeast DNA molecules showed that the rapid reformation of duplex DNA is not the consequence either of a bimolecular reaction between separated DNA strands or of intrastrand renaturation. The data indicate that when the yeast DNA molecules are completely denatured, the strands fail to separate. Hence they must be cross-linked. Experiments with sheared DNA show that there are small number of cross-links, one to four, permolecule.  相似文献   

20.
Solution properties of chitin in alkali   总被引:1,自引:0,他引:1  
The solution properties of alpha-chitin dissolved in 2.77 M NaOH are discussed. Chitin samples in the weight-average molecular weight range 0.1 x 10(6) g/mol to 1.2 x 10(6) g/mol were prepared by heterogeneous acid hydrolysis of chitin. Dilute solution properties were measured by viscometry and light scattering. From dynamic light scattering data, relative similar size distributions of the chitin samples were obtained, except for the most degraded sample, which contained aggregates. Second virial coefficients in the range 1 to 2 x 10(-3) mL.mol.g(-2) indicated that 2.77 M NaOH is a good solvent to chitin. The Mark-Houwink-Sakurada equation and the relationship between the z-average radius of gyration (Rg) and the weight-average molecular weight (Mw) were determined to be [eta] = 0.10Mw0.68 (mL.g(-1)) and Rg = 0.17Mw0.46 (nm), respectively, suggesting a random-coil structure for the chitin molecules in alkali conditions. These random-coil structures have Kuhn lengths in the range 23-26 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号