首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa PAO and 15 other strains of this species synthesized a polyester with 3-hydroxydecanoate as the main constituent (55 to 76 mol%) if the cells were cultivated in the presence of gluconate and if the nitrogen source was exhausted; 3-hydroxyhexanoate, 3-hydroxyoctanoate, and 3-hydroxydodecanoate were minor constituents of the polymer. The polymer was deposited in granules within the cell and amounted to 70% of the cell dry matter in some strains. Among 55 different strains of 41 Pseudomonas species tested, P. aureofaciens (21.6% of cellular dry matter), P. citronellolis (78.0%), P. chlororaphis (8.5%), P. marginalis (11.4%), P. mendocina (50.7%), P. putida (33.5%), and Pseudomonas sp. strain DSM 1650 (54.6%) accumulated this type of polymer at significant levels (greater than 5%) during cultivation on gluconate. In two strains of P. facilis and P. fluorescens, as well as in one strain of P. syringae, this polymer was detected as a minor constituent (much less than 5%). All other strains accumulated either poly(3-hydroxybutyrate) or a polymer consisting mainly of 3-hydroxyoctanoate with octanoate but no polyester with gluconate as the carbon source. Only a few species (e.g., P. stutzeri) were unable to accumulate poly(hydroxyalkanoic acids) (PHA) at all. These results indicated that the formation of PHA depends on a pathway which is distinct from all other known PHA-biosynthetic pathways. The polyesters accumulated by gluconate- or octanoate-grown cells of recombinant strains of P. aeruginosa and P. putida, which harbored the Alcaligenes eutrophus poly(3-hydroxybutyrate)biosynthetic genes, contained 3-hydroxybutyrate as an additional constituent.  相似文献   

2.
Summary A citronellol-utilizing bacterium was isolated that accumulated a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from various carbon sources up to approximately 70% of the cellular dry matter if the cells were cultivated in ammineral salts medium under nitrogen limitation. In octanoate-grown cells, for instance, the polyester consisted of 87.5 mol% 3HB and 12.5 mol% 3-hydroxyoctanoic acid (3HO), whereas it consisted of 10.3 mol% 3HB, 16.7 mol% 3HO and 73.0 mol% 3-hydroxydecanoic acid (3HD) in gluconate-grown cells. However, the results of various experiments indicated that a blend rather than a copolyester was synthesized in the cell. It was the only strain among 45 different recently isolated citronellol-utilizing bacteria that accumulated such a polyester. All other citronellol-utilizing bacteria behaved like Pseudomonas aeruginosa with respect to their polyhydroxyalkanoic acid (PHA) biosynthetic capabilities and accumulated PHA consisting of 3HAMCL with 3HO and 3HD as the main constituents from octanoate or gluconate, respectively, whereas 3HB was never present. None of 232 different heavy-metal-resistant bacteria was able to accumulate PHA composed of 3HB plus, for example, 3HO. Only 20.3% did not accumulate any PHA at all, 44.8% accumulated PHB from gluconate, and 34.9% behaved like P. aeruginosa. Many bacteria belonging to the latter group were distinguished from the other by rapid growth in nutrient broth and in gluconate mineral salts medium and by their ability to grow in the presence of a high concentration (up to 1.5%, w/v) of octanoate. Correspondence to: A. Steinbüchel  相似文献   

3.
Pseudomonas sp. A33 and other isolates of aerobic bacteria accumulated a complex copolyester containing 3-hydroxybutyric acid (3HB) and various medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from 3-hydroxybutyric acid or from 1,3-butanediol under nitrogen-limitated culture conditions. 3HB contributed to 15.1 mol/100 mol of the constituents of the polyester depending on the strain and on the cultivation conditions. The accumulated polymer was a copolyester of 3HB and 3HAMCL rather than a blend of poly(3HB) and poly(3HAMCL) on the basis of multiple evidence. 3-Hydroxyhexadecenoic acid and 3-hydroxyhexadecanoic acid were detected as constituents of polyhydroxyalkanoates, which have hitherto not been described, by13C nuclear magnetic resonance or by gas chromatography/mass spectrometric analysis. In total, ten different constituents were detected in the polymer synthesized from 1,3-butanediol by Pseudomonas sp. A33:besides seven saturated (3HB, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydrohexadecanoate) three unsaturated (3-hydroxydodecenoate, 3-hydroxytetradecenoate and 3-hydrohexadecanoate) hydroxyalkanoic acid constituents occured. The polyhydroxyalkanoate synthase of Pseudomonas sp. A33 was cloned, and its substrate specificity was evaluated by heterologous expression in various strains of P. putida, P. oleovorans and Alcaligenes eutrophus.  相似文献   

4.
Pseudomonas mendocina strain 0806 was isolated from oil-contaminated soil and found to produce polyesters consisting of medium chain length 3-hydroxyalkanoates (mclPHAs). The monomers of mclPHAs contained even numbers of carbon atoms, such as 3-hydroxyhexanoate (HHx or C6), 3-hydroxyoctanoate (HO or C8), and/or 3-hydroxydecanoate (HD or C10) as major components when grown on many carbon sources unrelated to their monomeric structures, such as glucose, citric acid, and carbon sources related to their monomeric structures, such as myristic acid, octanoate, or oleic acid. On the other hand, PHA containing both even and odd numbers of hydroxyalkanoates (HA) monomers was synthesized when the strain was grown on tridecanoic acid. The molar ratio of carbon to nitrogen (C/N) had a significant effect on PHA composition: the strain produced PHAs containing 97–99% of HD monomer when grown in a glucose ammonium sulfate medium of C/N<20, and 20% HO, and 80% of the HD monomer when growth was conducted in media containing C/N>40. It was demonstrated that the HO/HD ratio in the polymers remained constant in media with a constant C/N ratio, regardless of the glucose concentration. Up to 3.6 g/L cell dry weight containing 45% of PHAs was produced when the strain was grown for 48 h in a medium containing 20 g/L glucose with a C/N ratio of 40.  相似文献   

5.
Pseudomonas sp. 61-3 (isolated from soil) produced a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HA) of C6, C8, C10 and C12, when sugars of glucose, fructose and mannose were fed as the sole carbon source. The polyester produced was a blend of homopolymer and copolymer, which could be fractionated with boiling acetone. The acetone-insoluble fraction of the polyester was a homopolymer of 3-hydroxybutyrate units [poly (3HB)], while the acetone-soluble fraction was a copolymer [poly(3HB-co-3HA)] containing both short- and medium-chain-length 3-hydroxyalkanoate units ranging from C4 to C12:44 mol% 3-hydroxybutyrate, 5 mol% 3-hydroxyhexanoate, 21 mol% 3-hydroxyoctanoate, 25 mol% 3-hydroxydecanoate, 2 mol% 3-hydroxydodecanoate and 3 mol% 3-hydroxy-5-cis-dodecenoate. The copolyester was shown to be a random copolymer of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate units by analysis of the 13C-NMR spectrum. The poly(3HB) homopolymer and poly (3HB-co-3HA) copolymer were produced simultaneously within cells from glucose in the absence of any nitrogen source, which suggests that Pseudomonas sp. 61-3 has two types of polyhydroxy-alkanoate syntheses with different substrate specificities. Received: 9 June 1995/Received last revision: 30 October 1995/Accepted: 6 November 1995  相似文献   

6.
Pseudomonas stutzeri strain 1317 was found to grow on various fatty acids, alcohols, diols, as well as glucose and gluconate for the synthesis of polyhydroxyalkanoates (PHA) with various monomer units. The PHA monomer structures were dependent on the type of fatty acids and alcohols, as well as the diols in the culture media. Only even number monomers, such as 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO) and 3-hydroxydecanoate (HD), were accumulated when even numbered fatty acids, alcohols, glucose and gluconate, as well as diol were used as carbon sources. Odd numbered fatty acids and odd numbered alcohols led to the formation of odd numbered monomers, such as 3-hydroxyvalerate (HV), 3-hydroxyheptanoate (HHp), 3-hydroxynonanoate (HN) and 3-hydroxyundecanoate (HU). The strain tolerated up to 1.5% of ethanol and made 8.3% of PHA when growth was conducted in 1.2% of ethanol. PHA formed up to 77% of cell dry weight when the strain was grown in tridecanoate. PHA synthesis was highly dependent on the nitrogen source. A depletion in nitrogen supply immediately resulted in PHA accumulation in cells grown in the glucose mineral medium.  相似文献   

7.
2-Hydroxyalkanoates (2HAs) have become the new monomeric constituents of bacterial polyhydroxyalkanoates (PHAs). PHAs containing 2HA monomers, lactate (LA), glycolate (GL), and 2-hydroxybutyrate (2HB) can be synthesized by engineered microbes in which the broad substrate specificities of PHA synthase and propionyl-CoA transferase are critical factors for the incorporation of the monomers into the polymer chain. LA-based polymers, such as P[LA-co-3-hydroxybutyrate (3HB)], have the properties of pliability and stretchiness which are distinctly different from those of the rigid poly(lactic acid) (PLA) and P(3HB) homopolymers. This versatile platform is also applicable to the biosynthesis of GL- and 2HB-based polymers. In the case of the synthesis of 2HB-based polymers, the enantiospecificity of PHA synthase enabled the production of isotactic (R)-2HB-based polymers, including P[(R)-2HB], from racemic precursors of 2HB. P(2HB) is a pliable material, in contrast to PLA. Furthermore, to obtain a new 2HA-polymerizing PHA synthase, the class I PHA synthase from Ralstonia eutropha was engineered so as to achieve the first incorporation of LA units. The analysis of the polymer synthesized using this new LA-polymerizing PHA synthase unexpectedly focused a spotlight on the studies on block copolymer biosynthesis.  相似文献   

8.
Monomers of microbial polyhydroxyalkanoates, mainly 3-hydroxyhexanoic acid (3HHx) and 3-hydroxyoctanoic acid (3HO), were produced by overexpressing polyhydroxyalkanoates depolymerase gene phaZ, together with putative long-chain fatty acid transport protein fadL of Pseudomonas putida KT2442 and acyl-CoA synthetase (fadD) of Escherichia coli MG1655 in P. putida KT2442. FadL(Pp), which is responsible for free fatty acid transportation from the extracellular environment to the cytoplasm, and FadD(Ec), which activates fatty acid to acyl-CoA, jointly reinforce the fatty acid beta-oxidation pathway. Pseudomonas putida KT2442 (pYZPst01) harboring polyhydroxyalkanoates depolymerase gene phaZ of Pseudomonas stutzeri 1317 produced 1.37 g L(-1) extracellular 3HHx and 3HO in shake flask studies after 48 h in the presence of sodium octanoate as a sole carbon source, while P. putida KT2442 (pYZPst06) harboring phaZ(Pst), fadD(Ec) and fadL(Pp) achieved 2.32 g L(-1) extracellular 3HHx and 3HO monomer production under the same conditions. In a 48-h fed-batch fermentation process conducted in a 6-L fermentor with 3 L sodium octanoate mineral medium, 5.8 g L(-1) extracellular 3HHx and 3HO were obtained in the fermentation broth. This is the first time that medium-chain-length 3-hydroxyalkanoic acids (mcl-3HA) were produced using fadL(Pp) and fadD(Ec) genes combined with the polyhydroxyalkanoates depolymerase gene phaZ.  相似文献   

9.
A novel and efficient method for the production of enantiomericaly pure R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters was developed. The described method is based on hydrolysis of poly(hydroxyalkanoate) copolymers synthesized by Pseudomonas putida. The polymer was isolated via solvent recovery and hydrolyzed by acid methanolysis. The obtained 3-hydroxyalkanoic acid methylester mixture was distilled into several fractions with an overall yield of 96.6% (w/w). Gas chromatography-mass spectrometry analysis of the fractions showed that 3-hydroxyhexanoic-, 3-hydroxyoctanoic-, 3 hydroxydecanoic-, and 3-hydroxydodecanoic acid methylesters were enriched to purities exceeding 96 mol%, with distillation yields of 99.9, 99.8, 88.4, and 56.8% (w/w), respectively. Subsequent saponification of the purified methylester fractions yielded the corresponding 3-hydroxyalkanoic acids, which were recovered up to 92.8% (w/w). Chiral gas chromatography analysis confirmed that both 3-hydroxyoctanoic acid and 3-hydroxyoctanoic acid methylester are present in the R-form at a very high enantiomeric excess (>99.9%).  相似文献   

10.
In this study, we investigated the ability of Pseudomonas aeruginosa ATCC 27853 to grow and synthesize poly(3-hydroxyalkanoates) (PHAs) from saturated fatty acids with an even number of carbon atoms, from eight to 22, and from oleic acid. In a non-limiting medium, all carbon sources but docosanoic acid supported cell growth and PHA production, with eicosanoic acid giving the highest yield. In magnesium-limiting conditions, higher yields were obtained from sources with up to 16 carbon atoms. Composition was estimated by gas chromatography of methanolyzed samples and (13)C nuclear magnetic resonance. The 3-hydroxyalkanoate units extended from hexanoate to tetradecanoate or tetradecenoate, with octanoate and decanoate as the predominant components. Weight average molecular weights ranged from 78,000 to 316,000. Fast atom bombardment mass spectrometry of partially pyrolyzed samples, coupled to statistical analysis, showed that these PHAs are random copolymers.  相似文献   

11.
A newly isolated strain, designated as Pseudomonas sp. DSY-82, synthesized medium-chain-length polyhydroxyalkanoate (MCL-PHA) copolyesters when grown on alkanoates from hexanoate to undecanoate as the sole carbon source. When used alone, butyrate and valerate supported the growth of the isolate but not PHA production. However, unusual polyesters containing 3-hydroxyvalerate, as well as various MCL 3-hydroxyalkanoate monomeric units, were synthesized when valerate was cofed with either nonanoate or 10-undecenoate, suggesting the formation of monomer units from both substrates. Concentrations of 3-hydroxyvalerate, 3-hydroxyoctanoate, and 3-hydroxydecanoate in the PHAs produced were significantly elevated by the addition of valerate, indicating that the incorporation of these monomer units to PHA occurred primarily through cometabolism. The total amount of these monomer units in the PHAs reached up to 30%. The PHAs produced in this study were most likely random copolyesters as determined by differential scanning calorimetric analysis. This is the first case of microbial synthesis of copolyesters consisting of 3-hydroxyvalerate and MCL 3-hydroxyalkanoate monomer units through cometabolism.  相似文献   

12.
Summary Recombinant strains of Pseudomonas oleovorans, which harbour the poly(3-hydroxybutyrate)-biosynthetic genes of Alcaligenes eutrophus, accumulated poly(hydroxyalkanoates), composed of 3-hydroxybutyrate(3HB), 3-hydroxyhexanoate (3HHx) and 3-hydroxyactanoate (3HO), up to 70% of the cell dry weight if the cells were cultivated with sodium octanoate as the carbon source. Physiological and chemical analysis revealed multiple evidence that this polymer is a blend of the homopolyester poly(3HB) and of the copolyester poly(3HHx-co-3HO) rather than a random or a block copolyester of 3HB, 3HHx and 3HO. The molar ratio between poly(3HHx-co-3HO) and poly(3HB) varied drastically during the process of fermentation. Whereas synthesis of poly(3HHx-co-3HO) started immediately after ammonium was exhausted in the medium, synthesis of poly(3HB) occurred only after a lag-phase. From freeze-dried cells poly(3HHx-co-3HO) was much more readily extracted with chloroform than was poly(3HB). The blend was fractionated into petrol-ether-insoluble poly(3HB) and petrol-ether-soluble poly(3HHx-co-3HO). The molecular weight values of these polyesters measured by gel permeation chromatography were 2.96 × 106 and 0.35 × 106 and were similar of those polymers accumulated by A. eutrophus or by wild-type P. oleovorans, respectively. Offprint requests to: A. Steinbüchel  相似文献   

13.
Formation and isolation of leucocidin from Pseudomonas aeruginosa.   总被引:6,自引:0,他引:6  
A toxic substance, which destroyed leucocytes from man but was inactive against erythrocytes, was demonstrated in cultures of four out of 110 strains of Pseudomonas aeruginosa tested. The toxin, designated 'leucocidin', was cell-bound as a precursor toxin, exhibiting little or no toxicity. It was converted into toxin with maximum activity by various proteases including an endogenous elastase. The production of leucocidin was directly proportional to the number of bacteria and was not influenced by variations in media, iron concentration, pH or temperature. The best method for large-scale production of leucocidin was autolysis of washed bacteria.  相似文献   

14.
Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Romero, Ethel M. (Universidad Nacional de la Plata, La Plata, Argentina), and Rodolfo M. Brenner. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 91:183-188. 1966.-The lipids extracted from Pseudomonas aeruginosa incubated with hexadecane in a mineral medium were separated into a nonpolar and three polar fractions by thin-layer chromatography. The fatty acid composition of the four cellular fractions and that of the lipids excreted into the medium was studied by gas-liquid chromatography. Saturated fatty acids with 14 to 22 carbons were recognized, together with monoenoic, dienoic, and hydroxylated acids. Hydroxylated fatty acids were principally found in two polar fractions containing rhamnose and glucose; the other polar fraction, containing serine, alanine, ethanolamine, and leucine, was richer in monoenoic fatty acids. Octadecadienoic acid was found in the neutral fraction.  相似文献   

15.
16.
Nitrite Formation from Hydroxylamine and Oximes by Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
Nitrite was formed from hydroxylamine and several oximes by intact cells and extracts of Pseudomonas aeruginosa. The activity was induced by the presence of oximes in the culture medium. Nitroalkanes were not intermediates in the conversion of acetaldoxime, acetone oxime, or butanone oxime to nitrite, since nitromethane inhibited the formation of nitrite from the nitro compounds but not from the corresponding oximes. The oxime apparently functions as a constant source of hydroxylamine during growth of the bacterium. Hydroxylamine at low concentration was converted stoichiometrically to nitrite by extracts of the bacterium; high concentrations were inhibitory. Nicotinamide adenine dinucleotide phosphate, oxygen, and other unidentified cofactors were necessary for the reaction. Actively nitrifying extracts possessed no hydroxylamine-cytochrome c reductase activity. Hyponitrite, nitrous oxide, and nitric oxide were not metabolized.  相似文献   

17.
We recently identified the phaG(Pp) gene encoding (R)-3-hydroxydecanoyl-ACP:CoA transacylase in Pseudomonas putida, which directly links the fatty acid de novo biosynthesis and polyhydroxyalkanoate (PHA) biosynthesis. An open reading frame (ORF) of which the deduced amino acid sequence shared about 57% identity with PhaG from P. putida was identified in the P. aeruginosa genome sequence. Its coding region (herein called phaG(Pa)) was amplified by PCR and cloned into the vector pBBR1MCS-2 under lac promoter control. The resulting plasmid pBHR88 mediated PHA synthesis contributing to about 13% of cellular dry weight from non-related carbon sources in the phaG(Pp)-negative mutant P. putida PhaG(N)-21. The PHA was composed of 5 mol% 3-hydroxydodecanoate, 61 mol% 3-hydroxydecanoate, 29 mol% 3-hydroxyoctanoate and 5 mol% 3-hydroxyhexanoate. Furthermore, an isogenic phaG(Pa) knock-out mutant of P. aeruginosa was constructed by gene replacement. The phaG(Pa) mutant did not show any difference in growth rate, but PHA accumulation from gluconate was decreased to about 40% of wild-type level, whereas from fatty acids wild-type level PHA accumulation was obtained. These data suggested that PhaG from P. aeruginosa exhibits 3-hydroxyacyl-ACP:CoA transacylase activity and strongly enhances the metabolic flux from fatty acid de novo synthesis towards PHA(MCL) synthesis. Therefore, a function could be assigned to the ORF present in the P. aeruginosa genome, and a second PhaG is now known.  相似文献   

18.
Pseudomonas putida CA-3 accumulates polyphosphate (polyP) and medium-chain-length polyhydroxyalkanoate (mclPHA) concurrently under nitrogen limitation. Five other mclPHA-accumulating Pseudomonas strains are capable of simultaneous polyP and mclPHA biosynthesis. It appears that polyP is not the rate-limiting step for mclPHA accumulation in these Pseudomonas strains.  相似文献   

19.
Glucose transport by Pseudomonas aeruginosa was studied. These studies were enhanced by the use of a mutant, strain PAO 57, which was unable to grow on glucose but which formed the inducible glucose transport system when grown in media containing glucose or other inducers such as 2-deoxy-d-glucose. Both PAO 57 and parental strain PAO transported glucose with an apparent K(m) of 7 muM. Free glucose was concentrated intracellularly by P. aeruginosa PAO 57 over 200-fold above the external level. These data constitute direct evidence that glucose is transported via active transport by P. aeruginosa. Various experimental data clearly indicated that P. aeruginosa PAO transported methyl alpha-d-glucose (alpha-MeGlc) via the glucose transport system. The apparent K(m) of alpha-MeGlc transport was 7 mM which indicated a 1,000-fold lower affinity of the glucose transport system for alpha-MeGlc than for glucose. While only unchanged alpha-MeGlc was detected intracellularly in P. aeruginosa, alpha-MeGlc was actually concentrated intracellularly less than 2-fold over the external level. Membrane vesicles of P. aeruginosa PAO retained transport activity for gluconate. This solute was concentrated intravesicularly several-fold over the external level. A component of the glucose transport system is believed to have been lost during vesicle preparation since glucose per se was not transported. Instead; glucose was converted to gluconate by membrane-associated glucose dehydrogenase and gluconate was then transported into the vesicles. Although this may constitute an alternate system for glucose transport, it is not a necessary prerequisite for glucose transport by intact cells since P. aeruginosa PAO 57, which lacks glucose dehydrogenase, was able to transport glucose at a rate equal to the parental strain.  相似文献   

20.
A polyhydroxyalkanoate (PHA) synthase gene phaC2 Ps from Pseudomonas stutzeri strain 1317 was introduced into a PHA synthase gene phbC Re negative mutant, Ralstonia eutropha PHB4. It conferred on the host strain the ability to synthesize PHA, the monomer compositions of which varied widely when grown on different carbon sources. During cultivation on gluconate, the presence of phaC2 Ps in R. eutropha PHB4 led to the accumulation of polyhydroxybutyrate (PHB) homopolymer in an amount of 40.9 wt% in dry cells. With fatty acids, the recombinant successfully produced PHA copolyesters containing both short-chain-length and medium-chain-length 3-hydroxyalkanoate (3HA) of 4–12 carbon atoms in length. When cultivated on a mixture of gluconate and fatty acid, the monomer composition of accumulated PHA was greatly affected and the monomer content was easily regulated by the addition of fatty acids in the cultivation medium. After the (R)-3-hydroxydecanol-ACP:CoA transacylase gene phaG Pp from Pseudomonas putida was introduced into phaC2 Ps-containing R. eutropha PHB4, poly(3HB-co-3HA) copolyester with a very high 3-hydroxybutyrate (3HB) fraction (97.3 mol%) was produced from gluconate and the monomer compositions of PHA synthesized from fatty acids were also altered. This study clearly demonstrated that PhaC2Ps cloned from P. stutzeri 1317 has extraordinarily low substrate specificity in vivo, though it has only 54% identity in comparison to a previously described low-substrate-specificity PHA synthase PhaC1Ps from Pseudomonas sp. 61–3. This study also indicated that the monomer composition and content of the synthesized PHA can be effectively modulated by controlling the addition of carbon sources or by modifying metabolic pathways in the hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号