共查询到20条相似文献,搜索用时 0 毫秒
1.
Karl A. Nibbelink Daniel X. Tishkoff Stephen D. Hershey Ayesha Rahman Robert U. Simpson 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):533
The steroid hormone 1,25(OH)2-vitamin D3 [1,25D] has been shown to affect the growth and proliferation of primary cultures of ventricular myocytes isolated from neonatal rat hearts. The research presented here shows that the vitamin D receptor [VDR] is present in murine cardiac myocytes (HL-1 cells), and that 1,25D affects the growth, proliferation and morphology of these cells. In addition we show that 1,25D effects expression of ANP, myotrophin, and c-myc. Furthermore, 1,25D effects expression and localization of the VDR within the cell. Murine HL-1 cardiac myocytes were grown and treated with 1,25D in culture, and growth and morphology were assessed with microscopic analysis. Cells were counted and protein levels were evaluated through Western blot analysis. Subcellular localization of the VDR was determined using immunofluorescence and confocal microscopy. 1,25D was found to decrease proliferation and alter cellular morphology of the HL-1 cells. Treatment with 1,25D increased expression of myotrophin while decreasing expression of atrial natriuretic peptide [ANP] and c-myc. 1,25D treatment also increased expression and nuclear localization of the VDR in these cardiac myocytes. Thus 1,25D is an important hormone involved in modulating and maintaining heart cell structure and function. 相似文献
2.
Identification of novel mediators of Vitamin D signaling and 1,25(OH)2D3 resistance in mammary cells 总被引:1,自引:0,他引:1
Since the discovery of the Vitamin D receptor (VDR) in mammary cells, the role of the Vitamin D signaling pathway in normal glandular function and in breast cancer has been extensively explored. In vitro studies have demonstrated that the VDR ligand, 1,25(OH)2D3, modulates key proteins involved in signaling proliferation, differentiation and survival of normal mammary epithelial cells. Anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 have also been observed in VDR positive breast cancer cells, indicating that transformation per se does not abolish Vitamin D signaling. However, many breast cancer cell lines are less sensitive to 1,25(OH)2D3 than normal mammary epithelial cells. Reduced sensitivity to 1,25(OH)2D3 has been linked to alterations in Vitamin D metabolizing enzymes as well as down regulation of VDR expression or function. In this report, we describe results from a proteomics screening approach used to search for proteins involved in dictating sensitivity or resistance to Vitamin D mediated apoptosis in breast cancer cells. Several proteins not previously linked to 1,25(OH)2D3 signaling were identified with this approach, and a distinct subset of proteins was linked to 1,25(OH)2D3 resistance. Follow-up studies to determine the relevance of these proteins to Vitamin D signaling in general are in progress. 相似文献
3.
Drissi H Pouliot A Koolloos C Stein JL Lian JB Stein GS van Wijnen AJ 《Experimental cell research》2002,274(2):323-333
4.
The field of Vitamin D assay technology has progressed significantly over the past 4 decades. Further, the clinical utility of these measurements has moved from esoteric into mainstream clinical diagnosis. This movement has been fueled by the realization that Vitamin D is involved in bodily systems beyond skeletal integrity. The clinical assay techniques for circulating 25(OH)D and 1,25(OH)2D have progressed away from competitive protein binding assay (CPBAs) that utilize tritium reporters to radioimmunoassay (RIAs) that utilize both I125 and chemiluminescent reporters. These advances have allowed direct serum analysis of 25(OH)D in an automated format that provides a huge sample throughput. Detection of circulating 25(OH)D can also be achieved utilizing direct high-performance liquid chromatographic (HPLC) or liquid chromatography coupled with mass spectrometry (LC–MS) techniques. These methods are accurate, however, they require expensive equipment and restrict sample throughput in the large clinical laboratory. Direct serum detection of 1,25(OH)2D is unlikely to occur for many reasons as a sample pre-purification will always be required. However, a semi-automated chemiluminescent detection system with automated sample preparation is in final development for the determination of circulating 1,25(OH)2D. These advances will allow both 25(OH)D and 1,25(OH)2D to be detected in an accurate, rapid fashion to meet the clinical demands we see emerging. 相似文献
5.
Simpson RU Hershey SH Nibbelink KA 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):521-524
Our previous studies showed vitamin D deficiency results in increased cardiac contractility, hypertrophy and fibrosis and has profound effects on heart proteomics, structure and function in rat. In this study we found that the heart in vitamin D receptor knockout (VDR-KO) mice is hypertrophied. Six homozygous VDR knockout (−/−), six wild type (+/+) and six heterozygous (+/−) mice were fed a diet containing 2% Ca, 1.25% P and 20% lactose to maintain normal blood calcium and phosphate levels for 12 months. Tail-cuff blood pressure was performed on all mice. Blood pressure determinations showed no differences in systolic or mean blood pressure in WT (+/+), KO (−/−) or HETERO (+/−) mice at 3 and 6 months. However, decreased systolic BP in the KO mice relative to WT at 9 months of age was observed. ECG analysis showed no significant differences in the intact KO, HETERO or WT mice. The mice were killed at 12 months. Heart weight/body weight ratio was 41% (P < .003) greater in the KO mice versus WT and HETERO was 19% (P < .05) increased versus WT. Other VDR-KO tissues did not display hypertrophy. Cross sectional and longitudinal analysis of the heart myofibrils showed highly significant cellular hypertrophy in VDR-KO mice. Trichrome staining of heart tissue showed marked increase in fibrotic lesions in the KO mice. Analysis of plasma renin activity, angiotensin II (AII) and aldosterone levels showed elevated but not significantly different renin activity in KO versus WT and no significant differences in AII or aldosterone levels. Our data do not support the concept that the renin-angiotensin system or hypertension are the factors that elicit these changes. Data presented here reveal that ablation of the VDR signaling system results in profound changes in heart structure. We propose that calcitriol acts directly on the heart as a tranquilizer by blunting cardiomyocyte hypertrophy. 相似文献
6.
7.
J P van Leeuwen J C Birkenh?ger C J Buurman J P Schilte H A Pols 《FEBS letters》1990,270(1-2):165-167
In several cell types 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) causes up-regulation of its receptor. The present study demonstrates that in the osteoblast-like cell line UMR 106 this up-regulation is inhibited by two different calcium channel blockers (nitrendipine, verapamil). Also with chelating extracellular calcium (EGTA) and by inhibition of calcium release from intracellular stores (TMB-8) comparable results were obtained. These findings indicate that calcium is functionally involved in this cellular response to the steroid hormone 1,25(OH)2D3. Moreover, data obtained with EGTA show that the 1,25(OH)2D3 receptor level is closely regulated by the extracellular calcium concentration. 相似文献
8.
Bruce W. Hollis Ronald L. Horst 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):473
The field of Vitamin D assay technology has progressed significantly over the past 4 decades. Further, the clinical utility of these measurements has moved from esoteric into mainstream clinical diagnosis. This movement has been fueled by the realization that Vitamin D is involved in bodily systems beyond skeletal integrity. The clinical assay techniques for circulating 25(OH)D and 1,25(OH)2D have progressed away from competitive protein binding assay (CPBAs) that utilize tritium reporters to radioimmunoassay (RIAs) that utilize both I125 and chemiluminescent reporters. These advances have allowed direct serum analysis of 25(OH)D in an automated format that provides a huge sample throughput. Detection of circulating 25(OH)D can also be achieved utilizing direct high-performance liquid chromatographic (HPLC) or liquid chromatography coupled with mass spectrometry (LC–MS) techniques. These methods are accurate, however, they require expensive equipment and restrict sample throughput in the large clinical laboratory. Direct serum detection of 1,25(OH)2D is unlikely to occur for many reasons as a sample pre-purification will always be required. However, a semi-automated chemiluminescent detection system with automated sample preparation is in final development for the determination of circulating 1,25(OH)2D. These advances will allow both 25(OH)D and 1,25(OH)2D to be detected in an accurate, rapid fashion to meet the clinical demands we see emerging. 相似文献
9.
Rapuri PB Gallagher JC Nawaz Z 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):368-371
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells. 相似文献
10.
11.
Identification of novel mediators of Vitamin D signaling and 1,25(OH)2D3 resistance in mammary cells
Belinda Byrne JoEllen Welsh 《The Journal of steroid biochemistry and molecular biology》2007,103(3-5):703
Since the discovery of the Vitamin D receptor (VDR) in mammary cells, the role of the Vitamin D signaling pathway in normal glandular function and in breast cancer has been extensively explored. In vitro studies have demonstrated that the VDR ligand, 1,25(OH)2D3, modulates key proteins involved in signaling proliferation, differentiation and survival of normal mammary epithelial cells. Anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 have also been observed in VDR positive breast cancer cells, indicating that transformation per se does not abolish Vitamin D signaling. However, many breast cancer cell lines are less sensitive to 1,25(OH)2D3 than normal mammary epithelial cells. Reduced sensitivity to 1,25(OH)2D3 has been linked to alterations in Vitamin D metabolizing enzymes as well as down regulation of VDR expression or function. In this report, we describe results from a proteomics screening approach used to search for proteins involved in dictating sensitivity or resistance to Vitamin D mediated apoptosis in breast cancer cells. Several proteins not previously linked to 1,25(OH)2D3 signaling were identified with this approach, and a distinct subset of proteins was linked to 1,25(OH)2D3 resistance. Follow-up studies to determine the relevance of these proteins to Vitamin D signaling in general are in progress. 相似文献
12.
Louis G. Jenis Jane B. Lian Gary S. Stein Daniel T. Baran 《Journal of cellular biochemistry》1993,53(3):234-239
1α,25-Dihydroxyvitamin D3 exerts rapid nongenomic effects on rat osteoblast-like cells independent of the classic nuclear receptor. These effects include changes in phospholipid metabolism and cell calcium. Intracellular calcium itself has been proposed to regulate intracellular pH in osteoblast cell lines. The purpose of this study was to determine the effect of 1α,25-dihydroxyvitamin D3 on intracellular pH, the relationship of changes in calcium to changes in pH, and the role of pH changes in genomic activation. 1α,25-Dihydroxyvitamin D3 increased intracellular pH within 10 min in rat osteoblast-like cells, an effect that was inhibited by removal of extracellular sodium and by the biologically inactive epimer 1β,25-dihydroxyvitamin D3. The hormone increased intracellular calcium in Quin 2 loaded cells in the presence and absence of extracellular sodium. The 1α,25-dihydroxyvitamin D3-induced increments in osteocalcin and osteopontin mRNA levels were abolished in sodium-free medium. The results indicate that 1α,25-dihydroxyvitamin D3-induced increments in cellular calcium precede cell alkalinization and that these changes in intracellular pH may modulate steady-state mRNA levels of genes induced by vitamin D. 相似文献
13.
14.
Membrane receptor-initiated signaling in 1,25(OH)2D3-stimulated calcium uptake in intestinal epithelial cells 总被引:1,自引:0,他引:1
Demonstrating 1,25(OH)2D3-stimulated calcium uptake in isolated chick intestinal epithelial cells has been complicated by simultaneous enhancement of both uptake and efflux. We now report that in intestinal cells of adult birds, or those of young birds cultured for 72 h, 1,25(OH)2D3-stimulates 45Ca uptake to greater than 140% of corresponding controls within 3 min of addition. Such cells have lost hormone-stimulated protein kinase C (PKC) activity, believed to mediate calcium efflux. To further test this hypothesis, freshly isolated cells were preincubated with calphostin C, and calcium uptake monitored in the presence or absence of steroid. Only cells treated with the PKC inhibitor demonstrated a significant increase in 45Ca uptake in response to 1,25(OH)2D3, relative to corresponding controls. In addition, phorbol ester was shown to stimulate efflux, while forskolin stimulated uptake. To further investigate the mechanisms involved in calcium uptake, we assessed the role of TRPV6 and its activation by beta-glucuronidase. beta-Glucuronidase secretion from isolated intestinal epithelial cells was significantly increased by treatment with 1,25(OH)2D3, PTH, or forskolin, but not by phorbol ester. Treatment of cells with beta-glucuronidase, in turn, stimulated 45Ca uptake. Finally, transfection of cells with siRNA to either beta-glucuronidase or TRPV6 abolished 1,25(OH)2D3-enhanced calcium uptake relative to controls transfected with scrambled siRNA. Confocal microscopy further indicated rapid redistribution of enzyme and calcium channel after steroid. 1,25(OH)2D3 and PTH increase calcium uptake by stimulating the PKA pathway to release beta-glucuronidase, which in turn activates TRPV6. 1,25(OH)2D3-enhanced calcium efflux is mediated by the PKC pathway. 相似文献
15.
Hsieh JC Dang HT Galligan MA Whitfield GK Haussler CA Jurutka PW Haussler MR 《Biochemical and biophysical research communications》2004,324(2):801-809
The human vitamin D receptor (hVDR), which is a substrate for several protein kinases, mediates the actions of its 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) ligand to regulate gene expression. To determine the site, and functional impact, of cAMP-dependent protein kinase (PKA)-catalyzed phosphorylation of hVDR, we generated a series of C-terminally truncated and point mutant receptors. Incubation of mutant hVDRs with PKA and [gamma-32P]ATP, in vitro, or overexpressing them in COS-7 kidney cells labeled with [32P]orthophosphate, revealed that serine-182 is the predominant residue in hVDR phosphorylated by PKA. An aspartate substituted mutant (S182D), incorporating a negative charge to mimic phosphorylation, displayed only 50% of the transactivation capacity in response to 1,25(OH)2D3 of either wild-type or an S182A-altered hVDR. When the catalytic subunit of PKA was overexpressed, a similar reduction in wild-type but not S182D hVDR transactivity was observed. In a mammalian two-hybrid system, S182D bound less avidly than wild-type or S182A hVDR to the retinoid X receptor (RXR) heterodimeric partner that co-mediates vitamin D responsive element recognition and transactivation. These data suggest that hVDR serine-182 is a primary site for PKA phosphorylation, an event that leads to an attenuation of both RXR heterodimerization and resultant transactivation of 1,25(OH)2D3 target genes. 相似文献
16.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc. 相似文献
17.
Teillaud C Nemere I Boukhobza F Mathiot C Conan N Oboeuf M Hotton D Macdougall M Berdal A 《Journal of cellular biochemistry》2005,94(1):139-152
The rapid, nongenomic effects of 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3 have been related to a 1,25D3-membrane associated, rapid response steroid binding protein or 1,25D3-[MARRS]bp, with a molecular weight of 65 kDa, in several tissues and species. Currently, no information is available concerning the nongenomic responses to 1alpha,25-(OH)2D3 in dental tissues. In order to investigate the expression of 1,25D3-[MARRS]bp in dental cells, in the presence or absence of 1alpha,25-(OH)2D3, we have used rabbit polyclonal antibodies directed against the N-terminus of the 1,25D3-[MARRS]bp (Ab099) that recognizes the 1alpha,25-(OH)2D3 binding protein in chick intestinal basolateral membranes and a mouse odontoblast-like cell line (MO6-G3). Western blotting and flow cytometric analyses with Ab099 specifically detected 1,25D3-[MARRS]bp in MO6-G3 cells. Moreover, 1,25D3-[MARRS]bp was up-regulated, in vivo, in differentiated dental cells. Electron microscopic analysis confirmed the plasma membrane localization of this binding protein and also showed its intracellular presence. Incubation of MO6-G3 cells with different doses of 1alpha,25-(OH)2D3 for 36 h resulted in an inhibition of 1,25D3-[MARRS]bp expression with a maximal effect at 50 nM steroid. In addition, the culture media of MO6-G3 cells contains immunoreactive 1,25D3-[MARRS]bp. Immunogold positive membrane vesicle-like structures are present in the extracellular matrix of MO6-G3 cells. Altogether, these results indicate that the 1,25D3-[MARRS]bp expression in MO6-G3 cells is modulated by 1alpha,25-(OH)2D3. In conclusion, this 1alpha,25-(OH)2D3 binding protein could play an important role in the rapid, nongenomic responses to 1alpha,25-(OH)2D3 in dental cells. 相似文献
18.
Mizwicki MT Bishop JE Olivera CJ Huhtakangas J Norman AW 《Journal of cellular biochemistry》2004,91(4):852-863
The seco-steroid hormone 1alpha,25(OH)(2)-vitamin D(3) (1,25-D(3)) is known to generate biological responses via both genomic and non-genomic rapid signal transduction pathways. The calcium regulated annexin II/p11 heterotetramer (AII(2)/p11(2)] was proposed by Baran and co-authors to be the membrane receptor responsible for mediating non-genomic, rapid actions of 1,25-D(3), based on ligand affinity labeling, competition, and saturation analysis experiments. Given the cytosolic presence of both the monomeric and heterotetrameric form of AII and their functional regulation by intracellular calcium concentrations, which are known to be affected by 1,25-D(3) rapid, non-genomic activities, we investigated in vitro the affinity of [(3)H]1,25-D(3) for the AII monomer and AII(2)/p11(2) in the absence and presence of calcium using saturation analysis and gel-filtration chromatography. Using two different techniques for separating bound from free ligand (perchlorate and hydroxylapatite (HAP)) over a series of 30 experiments, no evidence for specific binding of [(3)H]1,25-D(3) was obtained with or without the presence of 700 nM exogenous calcium, using either the AII monomer or AII(2)/p11(2). However saturable binding of [(3)H]1,25-D(3) to the lipid raft/caveolae enriched rat intestinal fraction was consistently observed (K(d) = 3.0 nM; B(max) = 45 fmols/mg total protein). AII was detected in lipid raft/caveolae enriched fractions from rat and mouse intestine and ROS 17/2.8 and NB4 cells by Western blot, but incubation in the presence of exogenous calcium did not ablate 1,25-D(3) binding as reported by Baran et al. Our results suggest that AII does not bind 1,25-D(3) in a physiologically relevant manner; however, recent studies linking AII(2)/p11(2) phosphorylation to vesicle fusion and its calcium regulated localization may make AII a possible down-stream substrate for 1,25-D(3) induced rapid cellular effects. 相似文献
19.