首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and organization of the organic matrix of the cusps of the major lateral teeth of the chiton Acanthopleura hirtosahave been examined using conventional light and transmission electron microscopy techniques and by using the protein ferritin as an ultrastructural probe. The results show major structural differences in the organic matrix between the surface layers of the anterior (calcified) region and the posterior (magnetite-mineralized) region and their respective underlying regions. In addition, the central (lepidocrocite-mineralized) region of the tooth has been examined and shown to consist of bundles of fibres arranged such that they display a tightly interwoven pattern. It is suggested that while the structural organization of surface fibres readily permits the passage of ions required for mineralization, the architecturally discrete distribution of biominerals found in mature chiton teeth is due mostly to spatial delineation of the tooth by matrix macromolecules in the central region of the tooth.  相似文献   

2.
 In situ Raman spectroscopy, in combination with energy dispersive spectroscopy, has been used for the first time to determine the identities and locations, at the micron level, of mineral phases present in single chiton teeth that have been extensively mineralized. At the later stages of development the major lateral teeth of the chiton Acanthopleura hirtosa show characteristic spectroscopic evidence for the presence of lepidocrocite (γ-FeOOH), magnetite (Fe3O4), and an apatitic calcium phosphate. Goethite (α-FeOOH) and ferrihydrite (5 Fe2O3·9 H2O), which have been detected previously in teeth at the early stages of mineralization, were not detected in this mature tooth. The spatial distribution of these phases was determined, providing evidence for the presence of a discrete layer of lepidocrocite between the magnetite and apatite regions, illustrating the complexity of the biomineralization process. The technique of laser Raman microscopy is shown to be ideal for the examination of small biomineralized structures in situ, such as chiton teeth. Received: 6 July 1998 / Accepted: 19 August 1998  相似文献   

3.
The major lateral teeth of the chiton Acanthopleura echinata are composite structures composed of three distinct mineral zones: a posterior layer of magnetite; a thin band of lepidocrocite just anterior to this; and apatite throughout the core and anterior regions of the cusp. Biomineralization in these teeth is a matrix-mediated process, in which the minerals are deposited around fibers, with the different biominerals described as occupying architecturally discrete compartments. In this study, a range of scanning electron microscopes was utilized to undertake a detailed in situ investigation of the fine structure of the major lateral teeth. The arrangement of the organic and biomineral components of the tooth is similar throughout the three zones, having no discrete borders between them, and with crystallites of each mineral phase extending into the adjacent mineral zone. Along the posterior surface of the tooth, the organic fibers are arranged in a series of fine parallel lines, but just within the periphery their appearance takes on a "fish scale"-like pattern, reflective of the cross section of a series of units that are overlaid, and offset from each other, in adjacent rows. The units are approximately 2 microm wide and 0.6 microm thick and comprise biomineral plates separated by organic fibers. Two types of subunits make up each "fish scale": one is elongate and curved and forms a trough, in which the other, rod-like unit, is nestled. Adjacent rod and trough units are aligned into large sheets that define the fracture plane of the tooth. The alignment of the plates of rod-trough units is complex and exhibits extreme spatial variation within the tooth cusp. Close to the posterior surface the plates are essentially horizontal and lie in a lateromedial plane, while anteriorly they are almost vertical and lie in the posteroanterior plane. An understanding of the fine structure of the mineralized teeth of chitons, and of the relationship between the organic and mineral components, provides a new insight into biomineralization mechanisms and controls.  相似文献   

4.
The hydrated iron(III) oxide limonite is reported for the first time as a biomineral. In situ laser Raman spectra of the tooth cores from major lateral teeth of the chiton Plaxiphora albida are compared with those of synthetic and mineral iron phosphates and iron oxides. Raman spectra measured on iron phosphate and iron oxide standard materials are shown to be easily distinguishable from one another. The central tooth cores of mature P. albida teeth do not show any evidence for the presence of a separate iron phosphate mineral. Rather, in each tooth a narrow band of the hydrated iron(III) oxide limonite is shown to separate the magnetite of the tooth surface from a central core region comprising both lepidocrocite and limonite. The high concentration of phosphorus in P. albida tooth cores, previously observed by energy dispersive spectroscopy, is not associated with a separate iron phosphate mineral, indicating that this element may be adsorbed onto the surface of the iron oxide minerals present. The failure to detect a separate iron(III) phosphate is discussed with reference to other chiton species that display high levels of iron and phosphorus in the cores of their mature major lateral teeth.  相似文献   

5.
We examined whether a gonadotropin-releasing hormone (GnRH)-like peptide is present in the nerve ganglion of the chiton Acanthopleura japonica (Mollusca, Polyplacophora) using reverse-phase high performance liquid chromatography (rpHPLC) combined with time-resolved fluoroimmunoas-say (TR-FIA) analysis, and immunohistochemistry. An extract of the chiton head region showed a similar retention time to that of synthetic lamprey GnRH-II on rpHPLC combined with TR-FIA analysis using a rabbit polyclonal antibody raised against chicken GnRH-II (aCII6). Cell bodies immunostained with LRH13 (a mouse monoclonal antibody raised against the common amino acid sequence of vertebrate GnRH) were detected in the cerebrobuccal ring (CBR). Cell bodies immunostained with aCII6 were not only observed in the CBR but also in the lateral nerve cord (LCo). Fibers immunostained with LRH13 and aCII6 were widely distributed throughout the central nervous system in the CBR, subradular ganglion (SubRG), pedal nerve cord (PCo), pedal commissure (P/PCom), lateropedal commissure (L/PCom), and from the LCo to the suprarectal commissure (SupRecCom). The cell bodies and fibers immunostained with these two antisera were distinguishable by dual-label immunohistochemistry. These results suggest that multiple GnRH-like peptides are present in the nerve ganglion of the chiton Acanthopleura japonica.  相似文献   

6.
The subunit structure and solution conformation of the hemocyanin of the chiton Acanthopleura granulata were investigated by light-scattering, ultracentrifugation, viscosity, absorbance, and circular dichroism methods. The molecular weight, determined by light scattering at pH 7.4 in the presence of 0.05 M Mg2+ and 0.01 M Ca2+, was (4.2 +/- 0.3) X 10(6), while those of dissociated subunits in the presence of 8.0 M urea (at pH 7.4) and at pH 10.7 were found to be 4.57 X 10(5) and 4.58 X 10(5), respectively. Circular dichroism and absorbance measurements at 222 and 346 nm indicate only minor changes in the conformation of the folded domains of the hemocyanin subunits in these dissociating solvents. As with the hemocyanins of the snails Busycon canaliculatum, Lunatia heros, and Littorina littorea, exposure to 4.0-6.0 M guanidinium chloride (GdmCl) is found to produce unfolding of the domains, resulting in much more pronounced spectral changes and a further drop in molecular weight. A Mw of 3.2 X 10(5) was obtained with Acanthopleura hemocyanin in 6.0 M GdmCl, suggesting hidden breaks in the polypeptide chains analogous to those observed with the gastropodan hemocyanins. Both urea and pH dissociation showed gradual declines in the molecular weights, consistent with a decamer-dimer-monomer scheme of subunit dissociation. The bell-shaped molecular weight profiles obtained in the pH region from 5 to 11 can be accounted for by assuming two proton-linked groups per dimer, characterized by apparent pK values of 5.5 and 9.5, and the further involvement of five to eight acidic and five to eight basic groups per monomer, having apparent pK values of 5.0 and 10.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The morphology and histology of the alimentary canal of the rock chiton Acanthopleura spinigera are described and the ability of regions of the gut to digest specific substrates investigated. The oesophagus is produced into a pair of thin-walled lateral pouches, the salivary glands or "sugar glands" which empty into the stomach. Folds of the capacious stomach are almost obscured by the large digestive gland over which is coiled the intestine. Histologically the gut consists of an outer layer of connective tissue, an inner muscular layer and a ciliated epithelium which varies in thickness from one region to the next. Proteases are most active in the stomach, digestive gland and anterior intestine at pH 6·5 and in the posterior intestine at pH 7·5-8·5. The digestion of lipoidal substance was greatest in the stomach and digestive gland and least in anterior intestine. There was little increase in the amount of digestion product obtained after 20 hours incubation. All regions of the alimentary canal and salivary gland were capable of digesting carbohydrates except that many low molecular weight carbohydrates were digested by salivary gland extracts only. The amylases were most active at pH 6–6·5. It is concluded that digestive enzymes are distributed throughout the intestinal tract but the amount of enzyme present varies from region to region, and is greatest just after feeding.  相似文献   

8.
Teratological specimens deviate from the conserved form of their species. In doing so, they serve as natural experiments that refine our knowledge of developmental mechanisms and the natural limits of phenotypes. Here, we describe a specimen of the West Indian Fuzzy Chiton Acanthopleura granulata (Gmelin, 1791) with a fifth valve split into two halves. Using micro-CT to non-invasively visualize the external and internal morphology of this specimen, we find that the half valves are symmetrical and independent from each other and from any of the other valves. The presence of girdle-like tissue between the split valves suggests that this shell abnormality arose in early development and was not the product of damage to the adult animal. While the present specimen of A. granulata is clearly abnormal for its species, its split valve may provide some insights into the developmental pathways that would underlie macroevolutionary transitions to multi-plated chiton forms known from the fossil record.  相似文献   

9.
A detailed investigation of the stylus canal situated within the iron mineralized major lateral teeth of the chiton Acanthopleura hirtosa was undertaken in conjunction with a row‐by‐row examination of cusp mineralization. The canal is shown to contain columnar epithelial tissue similar to that surrounding the mineralized cusps, including the presence of iron rich particles characteristic of the iron storage protein ferritin. Within the tooth core, a previously undescribed internal pathway or plume is evident above the stylus canal, between the junction zone and mineralizing posterior face of the cusp. Plume formation coincides with the appearance of iron in the superior epithelium and the onset of mineralization at tooth row 13. The plume persists during the delivery of phosphorous and calcium into the tooth core, and is the final region of the cusp to become mineralized. The presence of the stylus canal was confirmed in a further 18 chiton species, revealing that the canal is common to polyplacophoran molluscs. These new data strongly support the growing body of evidence highlighting the importance of the junction zone for tooth mineralization in chiton teeth, and indicate that the chemical and structural environment within the tooth cusp is under far greater biological control than previously considered. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
The intertidal chiton Acanthopleura gemmata (Blainville) is a central place forager which rests in a dug scar and moves at nocturnal low tide. The fraction of chitons abandoning the home during each potential foraging phase is reduced after experimental overcrowding. On the contrary, reduced crowding in the natural population increases number of active chitons. Feeding excursions after increasing or reducing crowding are shorter than in control chitons. Also the orientation of migration is scattered after manipulation. Animals sharing their home with a conspecific suppress migrations, but local overcrowding when body-contact is lacking also reduces activity. Rest zonation in overcrowded areas shifts upward, and most imported chitons fail to home. Induced home co-ownership is followed by overt aggressive patterns and by a “waiting war”. Conflicts are resolved according to size ratio between contestants.  相似文献   

11.
Stress protein (heat shock protein, hsp70) response is involved in protecting organisms from the detrimental effects of environmental stressors, such as radiation and high temperatures. Tropical chitons can briefly tolerate high temperatures. However, they minimize the effects of elevated temperature during daylight hours and periods of tidal air exposure by remaining in rocky intertidal microhabitats along the shoreline of tropical waters. To study the natural variability of the hsp70 level, individuals of the polyplacophoran species Acanthopleura granulata Gmelin, 1791 were sampled every 4 h on two days in spring of 1999. Hsp70 levels were separately measured in the supernatant of the intestinal tract and foot muscle homogenates with a standardized immunoassay. The hsp70 level in the intestinal tract was highest in the early morning, decreased during the mid-morning hours and dropped to a comparatively low level in the afternoon, before increasing again during the night. The stress protein level in the foot muscle followed the daily air temperature curve with a time delay of a few hours, reaching the highest level in the afternoon and the lowest level in the early morning. The stress protein response can be interpreted as a sign of heat tolerance development and may play a role in allowing A. granulata to tolerate the temperature variability typical of its intertidal habitat.  相似文献   

12.
Two new species of the genus Leptochiton, L. сommandorensis sp. nov. and L. incubatus sp. nov. from north-western Pacific are described. Leptochiton сommandorensis differs from the congeners in having radial rows of granules in the lateral areas of intermediate valves, unicuspid dental cap on major lateral teeth of the radula, and dorsal scales with two ribs. Leptochiton incubatus differs from the congeners in having one aesthete pore in each granule, a shallow depression between the central and lateral areas of intermediate valves and between the antemucronal and postmucronal areas of the tail valve, and unicuspid head of major lateral teeth of radula. This species is brooding.  相似文献   

13.
The radula in a group of molluscan invertebrates, the chitons (Polyplacophora), is a ribbon-like apparatus used for feeding and which bears a series of distinctive mineralized teeth called the major lateral teeth. While some chiton species deposit only iron biominerals in these teeth, many others deposit both iron and calcium. In this study, the calcium biomineral in the teeth of one of the latter types of species, the Australian east-coast chiton, Chiton pelliserpentis, has been isolated and examined for the first time. Spectroscopic and crystallographic techniques have identified the biomineral as a carbonate-substituted apatite with significant fluoride substitution also likely. Fourier-transform infrared and laser Raman spectroscopy indicated that the carbonate content was less than that of either bovine tibia cortical bone or human tooth enamel. X-ray diffraction analysis showed the biomineral to be poorly crystalline due to small crystal size and appreciable anionic substitution. The lattice parameters were calculated to be a=9.382?Å and c=6.883?Å, which are suggestive of a fluorapatite material. It is postulated that structural and biochemical differences in the tooth organic matrix of different chiton species will ultimately determine if the teeth become partly calcified or iron mineralized only.  相似文献   

14.
The bioerosive potential of the intertidal chiton Acanthopleura gemmata on One Tree Reef was determined by quantification of CaCO3 in daily faecal pellet production of individuals transplanted into mesocosms after nocturnal-feeding forays. Mean bioerosive potential was estimated at 0.16 kg CaCO3 chiton−1 yr−1. Bioerosion rates were estimated for populations on two distinct chiton habitats, reef margin (0.013 kg CaCO3 m−2 yr−1) and beachrock platform (0.25 kg CaCO3 m−2 yr−1). Chiton density on the platform was orders of magnitude greater than on the reef margin. The surface-lowering rate (0.16 mm m−2 yr) due to bioerosion by the beachrock population is a substantial contribution to the total surface-lowering rate of 2 mm m−2 yr−1 previously reported for One Tree Reef across all erosive agents. At high densities, the contribution of A. gemmata to coral reef bioerosion budgets may be comparable to other important bioeroders such as echinoids and fish.  相似文献   

15.
The radular teeth of 55 species of Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) with known diets are classified into three basic groups: triangular, blade-shaped and sabot-shaped. Cell wall composition of the food plant is the single most important factor influencing radular morphology. The algae eaten by sacoglossans have either xylan, mannan or cellulose as their structural wall component. Sabot-shaped teeth are associated with diets of Siphonocladales and Cladophorales, which have cellulose cell walls of a 'crossed fibrillar texture'. Triangular teeth with lateral denticles are associated with diets of Caulerpa or with calcified algae. Most of these have xylan as the major structural polysaccharide. Blade-shaped teeth occur in a large number of species representing a wide variety of diets. It is proposed that the three types of teeth function in different manners. Tooth denticulation is correlated with functional group of the food plant. The radular teeth of Elysia viridis feeding on Codium are longer, wider and have more curved tips than teeth of E. viridis feeding on Chaetomorpha. The teeth of E. viridis transferred from Codium to Chaelomorpha in the laboratory change in shape as well as size.  相似文献   

16.
以红条毛肤石鳖Acanthochiton rubrolineatus(Lischke)齿舌为材料,通过切片和酶组织化学技术,在光镜和电镜下对齿舌主侧齿的微结构及高铁还原酶的存在进行观察,从微观角度了解齿舌主侧齿齿尖的矿化机理。结果显示,成熟主侧齿由齿尖和齿基组成。齿尖结构由外至内分为三层,最外层为磁铁矿层,前后齿面磁铁矿层的厚度不等,后齿面约50μm,前齿面约5-10μm。向内依次为棕红色的纤铁矿层,厚约10μm,及略显黄色的有机基质层,有机基质层占据着齿尖内部的大部分结构。高分辨透射电镜下显示磁铁矿由条状四氧化三铁颗粒组成,长约2-3μm,宽约100-150nm。齿舌的矿化是一个连续过程,不同部段处于不同的矿化阶段,齿舌囊上皮细胞沿囊腔分布,并形成齿片。未矿化的新生主侧齿齿尖中存在由有机基质构成的网状结构。随矿化的进行,有机基质内出现矿物颗粒。初始矿化的齿尖外表面有一个细胞微突层,微突的另一端为囊上皮细胞,矿物质经由微突层达齿尖并沉积于有机基质中,齿尖随之矿化并成熟。初始矿化齿尖的外围有大量的三价铁化物颗粒,稍成熟的齿尖外围同时还出现二价铁化物。新生或初始矿化主侧齿齿尖外围的囊上皮细胞中有大量球形类似于铁蛋白聚集体的内容物,直径0.6-0.8μm,球体由膜包围。齿舌囊上皮组织中存在三价高铁还原酶,此酶分布于上皮细胞的膜表面,可能与齿尖表面磁铁矿的生成有一定的关系。    相似文献   

17.
The magnetic anisotropy of the whole radula, the major lateral radula teeth, and magnetic material in the major lateral radula teeth of the chiton Acanthochiton rubrolinestus LISCHKE have been studied by a magnetic torque meter and superconducting quantum interference device (SQUID) magnetometer. The length and width axes of the teeth are the easily magnetized axes, while the thickness axis is difficult to magnetize. The width and thickness axes of the radula are the easily magnetized axes, and the length axis is difficult to magnetize. The measurement results of the whole radula and the major lateral radula teeth agree well with each other. The magnetic anisotropy of the magnetic material is given as well as a possible distribution of the magnetic material in the major lateral radula teeth.  相似文献   

18.
Abstract The structure, morphology and organisation of the cusps of the major lateral radula teeth of the chiton Plaxiphora albida have been examined using light, transmission and scanning electron microscopy, together with energy dispersive X-ray analysis and Mössbauer spectroscopy. In this chiton species, both the anterior and posterior surfaces of the major lateral teeth are composed of magnetite, which is indicated to be non-stoichiometric and associated with some maghemite, together with small amounts of phosphorus and silicon. This outer layer surrounds an inner core region of the tooth, which only reaches the surface through a small window zone on the anterior surface and which contains large amounts of iron and phosphorus presumably in the form of iron(III) phosphate. The organic matrix, on which the teeth are constructed, consists of a zone of densely packed fine fibres at the surface of the tooth, underlain by larger fibres which become sparser deeper into the cusp. The core region is characterized by the presence of densely packed short fibres. In contrast to the situation found in most other species of chiton, large fibres of the organic matrix extend throughout the region of magnetite mineralization, leading to the suggestion that the matrix exerts more control over the mineralization of magnetite than has previously been thought.  相似文献   

19.
In many mammalian species, the progressive wearing down of the teeth that occurs over an individual's lifetime has the potential to change dental function, jaw movements, or even feeding habits. The orientation of phase-I wear facets on molars reveals the direction of jaw movement during the power stroke of mastication. We investigated if and how molar wear facets change with increasing wear and/or age by examining a mixed longitudinal dataset of mandibular tooth molds from wild Propithecus edwardsi (N = 32 individuals, 86 samples). Measurements of the verticality of wear facets were obtained from three-dimensional digital models generated from μCT scans. Results show that verticality decreases over the lifetime of P. edwardsi, a change that implies an increasingly lateral translation of the jaw as the teeth move into occlusion. A more transverse phase-I power stroke supports the hypothesis that these animals chew to maximize longevity and functionality of their teeth, minimizing the "waste" of enamel, while maintaining sharp shearing crests. Results of this study indicate that wear facet verticality is more closely correlated with age than overall amount of tooth wear, measured as area of exposed dentin, suggesting that age-related changes in cranial morphology may be more responsible for adjustments in jaw motion over the lifetimes of Propithecus than wear-related changes inthe shape of occluding teeth. Finally, the rate of decrease in wear facet verticality with age is greater in males than in females suggesting differences in development and/or access to resources between the sexes in this species.  相似文献   

20.
Hamamelids have a long fossil history and an important fossil record. Their interesting biogeographic relationships indicate a great age. There exist good surveys of the pollen and floral organs of this family whereas it is so far poorly known from leaf architecture. The leaf architecture of all 29 genera with more than 60 among the total of 140 species of the family was surveyed in this work using clearified leaves. It is found that leaf architecture analysis may shed light on the relationships within the family and the conclusion of evolution based on leaf architecture basically accords with that based on others. The major categories of leaf architecture of Hamamelids observed in this work are as follows: leaf form, leaf margin, tooth type, venation, marginal ultimate venation, areolation and trichome. It must be emphasized that of all these characters the tooth type is the most stable and useful for systematics. In this work a new tooth type is recognized under the name altingioid. Teeth of this type are obviously asymmetrical, with a persistent transparent gland on the top, and with their lateral veinlets free, not reaching the medial vein. All three genera of the subfamily Liquidambaroideae have this tooth type, whereas most leaves of the rest genera of this family have fothergilloid teeth, which are basically symmetrical, without glands. The venation in the fothergilloid tooth is almost the same as that in the altingioid tooth, the only difference being that the lateral veins on the abaxial side of the altingioid teeth are usually absent or very weak and short if present. The present authors consider that the subfamily Liquidambaroideae has to be separated from the family Hamamelidaceae sensu lato and treated as an independent family, Altingiaceae, on the basis of the special tooth type. different pollen morphology and flower structure. The stability of tooth type may serve classification not only of order and family level, but also of tribe, genus and species level with the help of characters of teeth, such as shape, size, density, distribution, single or double, with or without glands. By comparison of Hamamelidaceae and Altingiaceae with some primitive families of subclass Hamamelidae, namely, Trochodendraceae, Tetracentraceae, Cercidiphyllaceae, Eupteleaceae and Platanaceae, the putative evolutionary trend of tooth types is outlined as follows: ↑ altingioid Chloranthoid → Cercidiphylloid →platanoid → fothergilloid In general evolutionarytrend of teeth within these families is reduction and simplification in structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号