首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hatchery cutthroat trout Oncorhynchus clarki clarki were used to examine the effects of 48 h and 3 week temperature acclimation periods on critical swimming speed ( U crit). The U crit was determined for fish at acclimation temperatures of 7, 14 and 18° C using two consecutive ramp‐ U crit tests in mobile Brett‐type swim tunnels. An additional group was tested at the stock's ambient rearing temperature of 10° C. The length of the temperature acclimation period had no significant effect on either the first or the second U crit( U crit‐1 and U crit‐2, respectively) or on the recovery ratio (the quotient of U crit‐2  U crit‐1−1). As anticipated, there was a significant positive relationship between U crit‐1 and temperature ( P  < 0·01) for both acclimation periods, and an increasing, though non‐significant, trend between U crit‐2 and temperature ( P  = 0·10). Acclimation temperature had no significant effect ( P  = 0·71) on the recovery ratio. These results indicate that a 48 h acclimation to experimental temperatures within the range of −3 to +8° C of the acclimation temperature may be sufficient in studies of swimming performance with this species. This ability to acclimate rapidly is probably adaptive for cutthroat trout and other species that occupy thermally variable environments.  相似文献   

2.
An experiment was conducted in sunlit controlled environment growth chambers to determine the physiological mechanisms of fruit abscission of cotton ( Gossypium hirsutum L. cv. NuCOTN 33B) grown in high temperature and enhanced ultraviolet (UV)-B radiation. Six treatments included two levels of optimum (30/22°C) and high (36/28°C) day/night temperatures and three levels of biologically effective UV-B radiation (0, 7, and 14 kJ m−2 per day). Both the temperature and UV-B treatments were imposed from seedling emergence through 79 days after emergence (DAE). High temperature did not negatively affect either leaf net photosynthetic rates (Pn) or abscission of cotton squares (floral buds with bracts) but significantly decreased boll retention. Plants exposed to 7 kJ UV-B radiation retained 56% less bolls than the 0 kJ UV-B control plants at 79 DAE, despite no significant differences in leaf Pn measured at squaring and flowering. At 53 DAE, leaf Pn of plants grown in high UV-B radiation (14 kJ m−2 per day) decreased by 11%, whereas total non-structural carbohydrate (TNC) concentrations in the leaves, floral buds, and young bolls decreased by 34, 32, and 20%, respectively, compared with the control plants. The high UV-B radiation significantly increased square abscission. Square abscission was not related to leaf TNC concentration but closely correlated with TNC in floral buds ( r  = −0.68, P  < 0.001). Young boll abscission was highly correlated with TNC concentrations in both the leaves ( r  = −0.40, P  < 0.01) and the bolls ( r  = −0.80, P  < 0.001). Our results indicate that non-structural carbohydrate limitation in reproductive parts was a major factor associated with fruit abscission of cotton grown under high temperature and enhanced UV-B radiation conditions.  相似文献   

3.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

4.
In plants, ultraviolet (UV)-B acclimation is a complex, dynamic process that plays an essential role in preventing UV-B damage to targets such as DNA and the photosynthetic machinery. In this study we tested the hypothesis that the phytohormone auxin is a component of the regulatory system that controls both UV-mediated accumulation of flavonoids and UV-induced morphogenesis. We found that the leaf area of Arabidopsis thaliana Col-0 plants raised under a low dose of UV radiation (0.56 kJ m(-2) daily dose) was, on average, decreased by 23% relative to plants raised in the absence of UV-B, and this was accompanied by a decrease (P = 0.063) in free auxin in young leaf tissues. Compared to Col-0, both the auxin influx mutant axr4-1 and the auxin biosynthesis mutant nit1-3 displayed significantly stronger morphogenic responses, i.e. relative decreases in leaf area were greater for these two mutants. UV exposure also induced accumulation of flavonoids. In Col-0, increases in the concentrations of specific kaempferol derivatives ranged from 2.1- to 19-fold. Thus, UV induces complex changes in flavonoid-glycosylation patterns. Compared to Col-0, three auxin mutants displayed significantly different flavonoid profiles. Thus, based on mutant analysis, it is concluded that the phytohormone auxin plays a role in UV acclimation by regulating flavonoid concentration, flavonoid-glycosylation pattern and by controlling UV-induced morphogenic responses.  相似文献   

5.
Energy density of anchovy Engraulis encrasicolus L. in the Adriatic Sea   总被引:1,自引:0,他引:1  
European anchovy Engraulis encrasicolus , with total lengths ranging from 40·0 to 132·5 mm, were sampled during October 2002 and May 2003 in the northern Adriatic Sea in order to estimate their energy densities ( E D). A highly significant ( P  < 0·001) relationship between E D(y)(J g−1wet mass) and per cent dry mass ( x ) was found: y  = 321 x  − 3316·9 ( n  = 161, r 2 = 0·82).  相似文献   

6.
While the influence of elevated CO2 on the production, mass and quality of plant seeds has been well studied, the effect of warming on these characters is largely unknown; and there is practically no information on possible interactions between warming and elevated CO2, despite the importance of these characters in population maintenance and recovery. Here, we present the impacts of elevated CO2 and warming, both in isolation and combination, on seed production, mass, quality, germination success and subsequent seedling growth of Austrodanthonia caespitosa , a dominant temperate C3 grass from Australia, using seeds collected from the TasFACE experiment. Mean seed production and mass were not significantly affected by either elevated CO2 or warming, but elevated CO2 more than doubled the proportion of very light, inviable seeds ( P < 0.05) and halved mean seed N concentration ( P < 0.04) and N content ( P < 0.03). The dependence of seed germination success on seed mass was affected by an elevated CO2× warming interaction ( P < 0.004), such that maternal exposure to elevated CO2 or warming reduced germination if applied in isolation, but not when applied in combination. Maternal effects were retained when seedlings were grown in a common environment for 6 weeks, with seedlings descended from warmed plants 20% smaller ( P < 0.008) with a higher root : shoot ratio ( P < 0.001) than those from unwarmed plants. Given that both elevated CO2 and warming reduced seed mass, quality, germinability or seedling growth, it is likely that global change will reduce population growth or distribution of this dominant species.  相似文献   

7.
The effect of feeding level ( F L; 0·5 to 4% dry diet mass per wet fish body mass) and feeding frequency (once every 4 days to twice per day) on postprandial metabolic response was investigated in southern catfish Silurus meridionalis at 27·5° C. The results showed that there was no significant difference in the specific dynamic action (SDA) coefficient among the groups of different feeding levels ( P  > 0·05). The duration increased from 26·0 to 40·0 h and the peak metabolic rate increased from 207·8 to 378·8 mg O2 kg−1 h−1 when the feeding level was increased from 0·5 to 4%. The relationship between the peak metabolic rate ( R P, mg O2 kg−1 h−1) and F L could be described as: R P = 175·4 + 47·3 F L( r 2 = 0·943, n  = 40, P  < 0·001). The relationship between the SDA duration ( D , h) and F L could be described as D =30·97 F L0·248 ( r 2=0·729, n =40, P  < 0·001).  相似文献   

8.
Pinfish Lagodon rhomboides acclimation rates were determined by modelling changes in critical thermal minimum ( T crit min, ° C) estimates at set intervals following a temperature decrease of 3–4° C. The results showed that pinfish gained a total of 3·7° C of cold tolerance over a range of acclimation temperatures ( T acc, ° C) from (23–12° C), that cold tolerance increased with exposure time to the reduced temperature at all T acc, but that the rate of cold tolerance accruement (mean 0·14° C day−1) was independent of T acc. A highly significant ( P < 0·001) multivariate predictive model was generated that described the acclimation rates and thermal tolerance of pinfish exposed to reduction in water temperature: log10 T crit min= 0·41597 − 0·01704 T acc+ 0·04320 T plunge− 0·08376[log10 ( t + 1)], where T plunge is plunge temperature (° C) and t is the time (days). A comparison of the present data, with acclimation rate data for other species, suggests that factors such as latitude or geographic range may play a more important role than ambient temperature in determining cold acclimation rates in fishes.  相似文献   

9.
Abstract: Qualitative or semi-quantitative visual assessments are most often used for estimating population size of herbivorous insects. The precision of these estimates, however, is often difficult to establish. A 'simulation game' with the horse chestnut leafminer, Cameraria ohridella Deschka & Dimic (Lep., Gracillariidae) shows that visual, semi-quantitative assessments can provide accurate information. Damaged areas of 411 horse chestnut leaves collected in 100 sites were closely related to mine numbers despite some variability in mine and leaf size ( R 2 = 0.915; n  = 411; P < 0.001). On the basis of this relationship, two methods of population assessment are compared: (i) digital image processing of leaf damage and (ii) visual assessment using a damage key reflecting the relative infested area on each leaf (0, 0%; 1, 0–2%; 2, 2–5%; 3, 5–10%; 4, 10–25%; 5, 25–50%; 6, 50–75%; 7, 75–100%). Both methods used to estimate damage presented a similar, close relationship to the 'real' numbers of mines ( R 2 = 0.858; n  = 777; P < 0.001 for image processing and R 2 = 0.905; n  = 777; P < 0.001 for visual assessment). The potential of using visual assessments as an accurate and fast method in situ at the tree scale is discussed.  相似文献   

10.
Variation in respiratory traits was quantified between two populations of the sailfin molly Poecilia latipinna (one from a periodically hypoxic salt marsh, Cedar Key, and one from a chronically normoxic river site, Santa Fe River). Two suites of characters were selected: traits that may show both short‐term acclimation response and interdemic variation in acclimation response (metabolic rate, critical oxygen tension and respiratory behaviour), and those that are not likely to respond to short‐term acclimation but may vary among populations (gill morphometric characters). Sailfin mollies from the salt marsh, acclimated to hypoxia (1 mg l−1, c . 20 mmHg) for 6 weeks, spent less time conducting aquatic surface respiration and had lower gill ventilation rates than hypoxia‐acclimated conspecifics from the well‐oxygenated river site. Poecilia latipinna acclimated to hypoxia exhibited a lower critical oxygen tension ( P c) than fish acclimated to normoxia; however, there was also a significant population effect. Poecilia latipinna from Cedar Key exhibited a lower P c than fish from the Santa Fe River, regardless of acclimation. Cedar Key fish had a 14% higher mean gill surface area relative to fish from the Santa Fe River, a character that could account, at least in part, for their greater tolerance to hypoxia.  相似文献   

11.
Aims:  To investigate the impact of aquatic humic matter on the inactivation of Escherichia coli and Bacillus subtilis by ultraviolet (UV) light.
Methods and Results:  A bench-scale study investigated the potential for Aldrich® humic acid (AHA) and Suwannee River natural organic matter (SR-NOM) to coat the surface of E. coli and B. subtilis and offer protection from low-pressure UV light. UV doses of 5 and 14 mJ cm−2 were applied using a collimated beam at four concentrations of humic matter (0, 10, 50 and 120 mg l−1) in reagent grade water. Both AHA and SR-NOM were found to offer statistically significant protection of both E. coli and B. subtilis at concentrations of 50 and 120 mg l−1 for a UV dose of 14 mJ cm−2.
Conclusions:  Both E. coli and B. subtilis are susceptible to coating by humic matter which can reduce the sensitivity of the cells to UV light.
Significance and impact of the study:  Micro-organisms in the environment may acquire characteristics through interaction with humic matter that render them more resistant to UV disinfection than would be predicted based on laboratory inactivation studies using clean cells.  相似文献   

12.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

13.
Peronospora parasitica causes downy mildew on crucifers. An isolate of P. parasitica (denoted NoCO2) was identified that infected Arabidopsis plants of the land race Columbia (Col-0) but not plants of land race Landsberg erecta (La- er ). Segregation analysis of F2 plants derived from a La- er x Col-0 cross established that the resistance was inherited as a single locus, denoted RPP5 . Macroscopic and microscopic examinations of inoculated La- er and Col-0 cotyledons showed that restriction of fungal growth in La- er was accompanied by massive callose accumulation and death of plant cells in direct contact with points of attempted fungal penetration. La- er x Col-0 F1 plants exhibited an intermediate resistance response in all aspects of fungal development, indicating that RPP5 is semi-dominant in its action. F8 recombinant inbred lines generated between La- er and Col-0 were used to map RPP5 to a narrow interval (<1.1 cM) on chromosome 4, utilizing existing restriction fragment length polymorphic (RFLP) markers and newly generated random amplified polymorphic DNA (RAPD) markers. The data provide a basis for the isolation of the RPP5 locus by positional cloning as a first step towards understanding recognitional specificity in plant-pathogen interactions at a molecular level.  相似文献   

14.
Vile D  Shipley B  Garnier E 《Ecology letters》2006,9(9):1061-1067
We show that ecosystem-specific aboveground net primary productivity (SANPP, g g−1 day−1, productivity on a per gram basis) can be predicted from species-level measures of potential relative growth rate (RGRmax), but only if RGRmax is weighted according to the species' relative abundance. This is in agreement with Grime's mass-ratio hypothesis. Productivity was measured in 12 sites in a French Mediterranean post-agricultural succession, while RGRmax was measured on 26 of the most abundant species from this successional sere, grown hydroponically. RGRmax was only weakly correlated ( r 2 = 0.12, P  < 0.05) with field age when species abundance was not considered, but the two variables were strongly correlated ( r 2 = 0.81, P  < 0.001) when the relative abundance of species in each field was taken into account. SANPP also decreased significantly with field age. This resulted in a tight relationship ( r 2 = 0.77, P  < 0.001) between productivity and RGRmax weighted according to species relative biomass contribution. Our study shows that scaling-up from the potential properties of individual species is possible, and that information on potential and realized species traits can be integrated to predict ecosystem functioning.  相似文献   

15.
1. Growth, density and δ13C of wood and leaf area were measured in two adjacent stands of 6 year-old Eucalyptus globulus growing in the 600–700 mm year–1 rainfall region of south-western Australia. Study sites were identical except for differences in the availability of water owing to physical properties of soil profiles and location of sites within the landscape.
2. Abundance of 13C (expressed as δ13C) in wood of trees growing on the drought-prone site (– 24·8‰±1·4) was greater than in other trees (– 25·8‰±1·2, P <0·001) throughout the 6 years and, with further development, the δ13C signatures of wood may become useful indices of drought-susceptibility in plantations within a few years of establishment. The seasonal pattern of δ13C of wood appeared to reflect seasonal variation in water availability and duration of cambial activity.
3. Basic density of wood of trees growing on the more drought-prone site (496±14·0 kg m–3) was reduced compared to other trees (554±5·3 kg m–3, P <0·001). δ13C of wood across boundaries of growth-rings suggested that drought stopped cambial activity resulting in less production of late wood and less dense wood.
4. The stand growing on the drought-prone site had reduced growth, wood yield and leaf area but identical specific leaf area. Annual growth was correlated with the previous season's rainfall. Together, these results suggested that within the same evaporative climate, drought reduces growth primarily by reducing leaf area and that there is a lag between onset of drought and reduced productivity.  相似文献   

16.
We investigated seasonal variation in dark respiration and photosynthesis by measuring gas exchange characteristics on Pinus radiata and Populus deltoides under field conditions each month for 1 year. The field site in the South Island of New Zealand is characterized by large day-to-day and seasonal changes in air temperature. The rate of foliar respiration at a base temperature of 10 °C ( R 10) in both pine and poplar was found to be greater during autumn and winter and displayed a strong downward adjustment in warmer months. The sensitivity of instantaneous leaf respiration to a 10 °C increase in temperature ( Q 10) was also greater during the winter period. The net effect of this strong acclimation was that the long-term temperature response of respiration was essentially flat over a wide range of ambient temperatures. Seasonal changes in photosynthesis were sensitive to temperature but largely independent of leaf nitrogen concentration or stomatal conductance. Over the range of day time growth temperatures (5–32 °C), we did not observe strong evidence of photosynthetic acclimation to temperature, and the long-term responses of photosynthetic parameters to ambient temperature were similar to previously published instantaneous responses. The ratio of foliar respiration to photosynthetic capacity ( R d/ A sat) was significantly greater in winter than in spring/summer. This indicates that there is little likelihood that respiration would be stimulated significantly in either of these species with moderate increases in temperature – in fact net carbon uptake was favoured at moderately higher temperatures. Model calculations demonstrate that failing to account for strong thermal acclimation of leaf respiration influences determinations of leaf carbon exchange significantly, especially for the evergreen conifer.  相似文献   

17.
Aim  To investigate the relationships between bird species richness derived from the North American Breeding Bird Survey and estimates of the average, minimum, and the seasonal variation in canopy light absorbance (the fraction of absorbed photosynthetically active radiation, fPAR) derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS).
Location  Continental USA.
Methods  We describe and apply a 'dynamic habitat index' (DHI), which incorporates three components based on monthly measures of canopy light absorbance through the year. The three components are the annual sum, the minimum, and the seasonal variation in monthly fPAR, acquired at a spatial resolution of 1 km, over a 6-year period (2000–05). The capacity of these three DHI components to predict bird species richness across 84 defined ecoregions was assessed using regression models.
Results  Total bird species richness showed the highest correlation with the composite DHI [ R 2 = 0.88, P  < 0.001, standard error of estimate (SE) = 8 species], followed by canopy nesters ( R 2 = 0.79, P  < 0.001, SE = 3 species) and grassland species ( R 2 = 0.74, P  < 0.001, SE = 1 species). Overall, the seasonal variation in fPAR, compared with the annual average fPAR, and its spatial variation across the landscape, were the components that accounted for most ( R 2 = 0.55–0.88) of the observed variation in bird species richness.
Main conclusions  The strong relationship between the DHI and observed avian biodiversity suggests that seasonal and interannual variation in remotely sensed fPAR can provide an effective tool for predicting patterns of avian species richness at regional and broader scales, across the conterminous USA.  相似文献   

18.
The direct effects of the nucleoside transporter inhibitor dilazep on the cell cycle of mesangial cells have not before been investigated. The purpose of this study was to elucidate whether dilazep can inhibit the proliferation of mesangial cells and how it interferes with the cell cycle of these cells. DNA histograms were used and BrdUrd uptake rate was measured by flow cytometry. There was no significant difference in the cell numbers among the untreated group and the 10−5M, 10−6M or 10−7M dilazep-treated groups at 24 h of incubation. However, at 48 and 72 h, the cell numbers in the dilazep-treated groups were significantly lower compared with that of the untreated group (P0.005). The DNA histograms of cultured rat mesangial cells at 12, 24, and 48 h of incubation with 10−5 M dilazep showed that the ratio of the S phase population in the dilazep-treated group decreased by 2.2% at 12 h, by 9.6% at 24 h, and by 18.9% at 48 h compared with the untreated group. The ratio of the G0/G1 phase population in the dilazep-treated group significantly increased: 6.8% at 12h (P 0.05), 13.9% at 24 h (P 0.001), and 76.5% at 48 h (P 0.001) compared with the untreated group. A flow cytometric measurement of bivariate DNA/BrdUrd distribution demonstrated that the DNA synthesis rate in the S phase decreased after 6 h (P 0.005) and 12 h (P 0.05) of incubation compared with the untreated group. These results suggest that dilazep inhibits the proliferation of cultured rat mesangial cells by suppressing the G1/S transition by prolonging G2/M and through decreasing the DNA synthesis rate  相似文献   

19.
Pinus banksiana seedlings were grown for 9 months in enclosures in greenhouses at CO2 concentrations of 350 or 750 μmol mol−1 with either low (0.005 to 0. 3 W m−2) or high (0.25 to 0. 90 W m−2) ultraviolet-B (UV-B) irradiances. Total seedling dry weight decreased with high UV treatment but was unaffected by CO2 enrichment. High UV treatment also shifted biomass partitioning in favor of leaf production. Both CO2 and UV treatments decreased the dark respiration rate and light compensation point. High UV light inhibited photosynthesis at 350 but not at 750 μmol mol−1 CO2 due to a UV induced increase in ribulose-1, 5-bisphosphate carboxylase/oxygenase efficiency and ribulose-1, 5-bisphosphate regeneration. Stomatal density was increased by high UV irradiance but was unchanged by CO2 enrichment.  相似文献   

20.
The ghost of granivory past   总被引:4,自引:0,他引:4  
We report a 36-month echo of vole ( Microtus pennsylvanicus ) seed-selection in the composition of synthetic forb communities in Wisconsin. An initial study showed direct suppression of an exceptionally large-seeded (seed > 15 mg) species ( Silphium integrifolium , Asteraceae) by seed-size predation by rodents during the winter, resulting in indirect release of small-seeded (seed ≤ 1.5 mg) species. Twelve months after planting, plant diversities (Simpson's D) were 33% higher in plots exposed to winter seed selection by rodents. Thirty-six months after planting, Silphium integrifolium had almost equalized densities in rodent access (20.8 ± 4.1 m–2) and exclusion (29.0 ± 5.2 m–2) plots, but still suppressed both large-seeded (≥ 3.5 mg) and small-seeded (≤ 1.5 mg) species ( F 1,16=11.84 and F 1,16=10.42, P  ≤ 0.005, respectively). A multivariate analysis of covariance ( MANCOVA ) distinguished effects of Silphium integrifolium (Wilk's lambda P =0.029) from echoes of earlier winter granivory (Wilk's lambda P =0.014). Thirty months after rodent exclusion, diversity (D) remained 27% higher in plots once opened to winter granivory (adjusted mean 4.70 ± 0.37 SE) as compared with closed plots (3.70 ± 0.26; F 1,16=5.12, P  < 0.05). Echoes of earlier granivory remained after rodent-induced imbalances in the abundances of the competitive driver of this system, Silphium integrifolium , all but disappeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号