首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Plants adapt to a changing environment by entraining their growth and development to prevailing conditions. Such 'plastic' development requires a highly dynamic integration of growth phenomena with signal perception and transduction systems, such as occurs during tropic growth. The plant hormone auxin has been shown to play a key role in regulating these directional growth responses of plant organs to environmental cues. However, we are still lacking a cellular and molecular understanding of how auxin-dependent signaling cascades link stimulus perception to the rapid modulation of growth patterns. Here, we report that in root gravitropism of Arabidopsis thaliana, auxin regulates root curvature and associated apoplastic, growth-related pH changes through a Ca2+-dependent signaling pathway. Using an approach that integrates confocal microscopy and automated computer vision-based image analysis, we demonstrate highly dynamic root surface pH patterns during vertical growth and after gravistimulation. These pH dynamics are shown to be dependent on auxin, and specifically on auxin transport mediated by the auxin influx carrier AUX1 in cells of the lateral root cap and root epidermis. Our results further indicate that these pH responses require auxin-dependent changes in cytosolic Ca2+ levels that operate independently of the TIR1 auxin perception system. These results demonstrate a methodology that can be used to visualize vectorial auxin responses in a manner that can be integrated with the rapid plant growth responses to environmental stimuli.  相似文献   

2.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

3.
Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high‐resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.  相似文献   

4.
Gravity signal transduction in primary roots   总被引:8,自引:0,他引:8  
AIMS: The molecular mechanisms that correlate with gravity perception and signal transduction in the tip of angiosperm primary roots are discussed. SCOPE: Gravity provides a cue for downward orientation of plant roots, allowing anchorage of the plant and uptake of the water and nutrients needed for growth and development. Root gravitropism involves a succession of physiological steps: gravity perception and signal transduction (mainly mediated by the columella cells of the root cap); signal transmission to the elongation zone; and curvature response. Interesting new insights into gravity perception and signal transduction within the root tip have accumulated recently by use of a wide range of experimental approaches in physiology, biochemistry, genetics, genomics, proteomics and cell biology. The data suggest a network of signal transduction pathways leading to a lateral redistribution of auxin across the root cap and a possible involvement of cytokinin in initial phases of gravicurvature. CONCLUSION: These new discoveries illustrate the complexity of a highly redundant gravity-signalling process in roots, and help to elucidate the global mechanisms that govern auxin transport and morphogenetic regulation in roots.  相似文献   

5.
Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.  相似文献   

6.
Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.  相似文献   

7.
Complex physiological and molecular processes underlying root gravitropism   总被引:8,自引:0,他引:8  
Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.  相似文献   

8.
9.
Plants depend on gravity to provide the constant landmark for downward root growth and upward shoot growth. The phytohormone auxin and its cell‐to‐cell transport machinery are central determinants ensuring gravitropic growth. Statolith sedimentation toward gravity is sensed in specialized cells. This positional cue is translated into the polar distribution of PIN auxin efflux carriers at the plasma membrane, leading to asymmetric auxin distribution and consequently, differential growth and organ bending. While we have started to understand the general principles of how primary organs execute gravitropism, we currently lack basic understanding of how lateral plant organs can defy gravitropic responses. Here we briefly review the establishment of the oblique gravitropic set point angle in lateral roots and particularly discuss the emerging role of asymmetric cytokinin signaling as a central anti‐gravitropic signal. Differential cytokinin signaling is co‐opted in gravitropic lateral and hydrotropic primary roots to counterbalance gravitropic root growth.  相似文献   

10.
We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Björkman and Cleland, 1988, Planta 176, 513–518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530–536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.  相似文献   

11.
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.  相似文献   

12.
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.  相似文献   

13.
14.
15.
Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.  相似文献   

16.
Differential growth curvature rate (DGCR), defined as the spatial derivative of the tropic speed, was derived as a measure of curvature production in cylindrical organs. Its relation to usual concepts, such as curvature (kappa), rate of curvature (dkappa/dt) and differential growth profiles, was determined. A root gravitropism model, testing the hypothesis of one and two motors, exemplified its capabilities.DGCR was derived using cylindrical geometry and its meaning was obtained through a curvature conservation equation. The root gravitropism model was solved using a discrete difference method on a computer.DGCR described curvature production independently of growth, and was superior to dkappa/dt, which underestimated production. Moreover, DGCR profiles were able to differ between one and two motors, while profiles of kappa and dkappa/dt were not.The choice of the measure of curvature production has a large impact on experimental results, in particular when spatial and temporal patterns of differential growth need to be determined. DGCR was shown to fulfill the accuracy needed in the quantification of curvature production and should thus serve as a helpful tool for measurements.  相似文献   

17.
Plant tropisms are decisively influenced by dynamic adjustments in spatiotemporal distribution of the growth regulators auxin. Polar auxin transport requires activity of PIN-type auxin carrier proteins, with their distribution at the plasma membrane significantly contributing to the directionality of auxin flow. Control of PIN protein distribution involves regulation of their endocytosis and further sorting into the lytic vacuole for degradation and recently, protein ubiquitylation has been demonstrated to control degradative sorting of plasma membrane proteins in plants.1-6 Here we show dynamic adjustments in PIN2 ubiquitylation in gravity-stimulated roots, a response that coincides with establishment of a lateral PIN2 expression gradient. Our results imply that perception and transduction of gravity signals triggers differential ubiquitylation of PIN2, which might feed back on the coordination of auxin distribution in root meristems.  相似文献   

18.
We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 M) that did not affect root growth. Calmodulin antagonists ( 1M) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip ( 1M) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists ( 1 M) become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.  相似文献   

19.
Auxin acts synergistically with cytokinin to control the shoot stem‐cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress‐induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al‐induced auxin signaling. Al stress triggers a local cytokinin response in the root‐apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up‐regulated specifically in the root‐apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum‐induced root growth inhibition in Arabidopsis.  相似文献   

20.
The multifunctionality of plant annexins and their importance for coordinating development and responses to biotic and abiotic environment have been largely reviewed. We recently described a tobacco annexin, named Ntann12, which is mainly localized in the nucleus of root cells when the plant is grown under light conditions. We also found that auxin and polar auxin transport are essential for Ntann12 accumulation in root cells. Under dark condition, Ntann12 is no longer detected in the root system. In the present addendum, light, regulating auxin signaling, is evidenced as an essential determinant for the synchronization of growth and development between the shoot and the root during light/dark cycle. A speculative model for Ntann12 is described and discussed with regards to relevant literature data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号