首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correct aminoacylation of tRNA with the proper aminoacid by aminoacyl-tRNA synthetase is one of the key reactions which determines the overall high fidelity of protein biosynthesis. The initial selection of the amino acid is achieved in the active centre of the synthetase at the activation step due to differences in the side chains binding energies of specific substrate and the competing amino acids present in cell. If, nevertheless, the activation of amino acids structurally similar to the cognate one does proceed, additional mechanisms of correction which are based on the decomposition of unstable noncognate (intermediate or final) product of the tRNA aminoacylation reaction, by synthetase are switched on. In this review the literature on the specificity of aminoacyl-tRNA synthetases at amino acid activation step is analyzed along with the proofreading mechanisms which allow the elimination of the errors, leading to so called superspecifity of aminoacyl-tRNA synthetases.  相似文献   

2.
Discrimination between isoleucine and valine is achieved with different accuracies by isoleucyl-tRNA synthetase from E. coli MRE 600. The recognition process consists of two initial discrimination steps and a pretransfer and a posttransfer proofreading event. The overall discrimination factors D were determined from kcat and Km values observed in aminoacylation of tRNA(Ile)-C-C-A with isoleucine and valine. From aminoacylation of the modified tRNA species tRNA(Ile)-C-C-A(3'NH2) initial discrimination factors I1 and pretransfer proofreading factors II1 were calculated. Factors I1 were computed from ATP consumption and D1, the overall discrimination in aminoacylation of the modified tRNA; factors II1 were calculated as quotient of AMP formation rates. Initial discrimination factors I2 and posttransfer proofreading factors II2 were determined from AMP formation rates observed in aminoacylation of tRNA(Ile)-C-C-A. The observed overall discrimination varies up to a factor of about four according to conditions. Under standard assay conditions 72,000, under optimal conditions 144,000 correct aminoacyl-tRNAs are produced per one error while 1.1 or 1.7 ATPs are consumed. A comparison with isoleucyl-tRNA synthetase from yeast shows that both enzymes act principally with the same recognition mechanism, but the enzyme from E. coli MRE 600 exhibits higher specificity and lower energy dissipation and does not show such high variation of accuracy as observed with the enzyme from yeast.  相似文献   

3.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

4.
The present study shows unilateral aminoacylation specificity between bovine mitochondria and eubacteria (Escherichia coli and Thermus thermophilus) in five amino acid-specific aminoacylation systems. Mitochondrial synthetases were capable of charging eubacterial tRNA as well as mitochondrial tRNA, whereas eubacterial synthetases did not efficiently charge mitochondrial tRNA. Mitochondrial phenylalanyl-, threonyl-, arginyl-, and lysyl-tRNA synthetases were shown to charge and discriminate cognate E. coli tRNA species from noncognate ones strictly, as did the corresponding E. coli synthetases. By contrast, mitochondrial seryl-tRNA synthetase not only charged cognate E. coli serine tRNA species but also extensively misacylated noncognate E. coli tRNA species. These results suggest a certain conservation of tRNA recognition mechanisms between the mitochondrial and E. coli aminoacyl-tRNA synthetases in that anticodon sequences are most likely to be recognized by the former four synthetases, but not sufficiently by the seryl-tRNA synthetase. The unilaterality in aminoacylation may imply that tRNA recognition mechanisms of the mitochondrial synthetases have evolved to be, to some extent, simpler than their eubacterial counterparts in response to simplifications in the species-number and the structural elements of animal mitochondrial tRNAs.  相似文献   

5.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNATyr with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNAGlu. Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

6.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

7.
Francklyn CS 《Biochemistry》2008,47(45):11695-11703
DNA polymerases and aminoacyl-tRNA synthetases (ARSs) represent large enzyme families with critical roles in the transformation of genetic information from DNA to RNA to protein. DNA polymerases carry out replication and collaborate in the repair of the genome, while ARSs provide aminoacylated tRNA precursors for protein synthesis. Enzymes of both families face the common challenge of selecting their cognate small molecule substrates from a pool of chemically related molecules, achieving high levels of discrimination with the assistance of proofreading mechanisms. Here, the fidelity preservation mechanisms in these two important systems are reviewed and similar features highlighted. Among the noteworthy features common to both DNA polymerases and ARSs are the use of multidomain architectures that segregate synthetic and proofreading functions into discrete domains; the use of induced fit to enhance binding selectivity; the imposition of fidelity at the level of chemistry; and the use of postchemistry error correction mechanisms to hydrolyze incorrect products in a discrete editing domain. These latter mechanisms further share the common property that error correction involves the translocation of misincorporated products from the synthetic to the editing site and that the accuracy of the process may be influenced by the rates of translocation in either direction. Fidelity control in both families can thus be said to rely on multiple elementary steps, each with its contribution to overall fidelity. The summed contribution of these kinetic checkpoints provides the high observed overall accuracy of DNA replication and aminoacylation.  相似文献   

8.
9.
Zhang CM  Hou YM 《Biochemistry》2005,44(19):7240-7249
Aminoacyl-tRNA synthetases form complexes with tRNA to catalyze transfer of activated amino acids to the 3' end of tRNA. The tRNA synthetase complexes are roughly divided into the activation and tRNA-binding domains of synthetases, which interact with the acceptor and anticodon ends of tRNAs, respectively. Efficient aminoacylation of tRNA by Escherichia coli cysteinyl-tRNA synthetase (CysRS) requires both domains, although the pathways for the long-range domain-domain communication are not well understood. Previous studies show that dissection of tRNA(Cys) into acceptor and anticodon helices seriously reduces the efficiency of aminoacylation, suggesting that communication requires covalent continuity of the tRNA backbone. Here we tested if communication requires the continuity of the synthetase backbone. Two N-terminal fragments and one C-terminal fragment of E. coli CysRS were generated. While the N-terminal fragments were active in adenylate synthesis, they were severely defective in the catalytic efficiency and specificity of tRNA aminoacylation. Conversely, although the C-terminal fragment was not catalytically active, it was able to bind and discriminate tRNA. However, addition of the C-terminal fragment to an N-terminal fragment in trans did not improve the aminoacylation efficiency of the N-terminal fragment to the level of the full-length enzyme. These results emphasize the importance of covalent continuity of both CysRS and tRNA(Cys) for efficient tRNA aminoacylation, and highlight the energetic costs of constraining the tRNA synthetase complex for domain-domain communication. Importantly, this study also provides new insights into the existence of several natural "split" synthetases that are now identified from genomic sequencing projects.  相似文献   

10.
Discrimination between cognate and non-cognate tRNAs by aminoacyl-tRNA synthetases occurs at several steps of the aminoacylation pathway. We have measured changes of solvation and counter-ion distribution at various steps of the aminoacylation pathway of glutamyl- and glutaminyl-tRNA synthetases. The decrease in the association constant with increasing KCl concentration is relatively small for cognate tRNA binding when compared to known DNA–protein interactions. The electro-neutral nature of the tRNA binding domain may be largely responsible for this low ion release stoichiometry, suggesting that a relatively large electrostatic component of the DNA–protein interaction free energy may have evolved for other purposes, such as, target search. Little change in solvation upon tRNA binding is seen. Non-cognate tRNA binding actually increases with increasing KCl concentration indicating that charge repulsion may be a significant component of binding free energy. Thus, electrostatic interactions may have been used to discriminate between cognate and non-cognate tRNAs in the binding step. The catalytic constant of glutaminyl-tRNA synthetase increases with increasing osmotic pressure indicating a water release of 8.4 ± 1.4 mol/mol in the transition state, whereas little change is seen in the case of glutamyl-tRNA synthetase. We propose that the significant amount of water release in the transition state, in the case of glutaminyl-tRNA synthetase, is due to additional contact of the protein with the tRNA in the transition state.  相似文献   

11.
Aminoacyl-tRNA synthetases often rely on a proofreading mechanism to clear mischarging errors before they can be incorporated into newly synthesized proteins. Leucyl-tRNA synthetase (LeuRS) houses a hydrolytic editing pocket in a domain that is distinct from its aminoacylation domain. Mischarged amino acids are transiently translocated ∼30 Å between active sites for editing by an unknown tRNA-dependent mechanism. A glycine within a flexible β-strand that links the aminoacylation and editing domains of LeuRS was determined to be important to tRNA translocation. The translocation-defective mutation also demonstrated that the editing site screens both correctly and incorrectly charged tRNAs prior to product release.  相似文献   

12.
The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this editing domain in its apo form and in complex with the serine product, and with two nonhydrolyzable analogs of potential substrates: the terminal tRNA adenosine charged with serine, and seryl adenylate. The structures show how serine is recognized, and threonine rejected, and provide the structural basis for the editing mechanism, a water-mediated hydrolysis of the mischarged tRNA. When the adenylate analog binds in the editing site, a phosphate oxygen takes the place of one of the catalytic water molecules, thereby blocking the reaction. This rules out a correction mechanism that would occur before the binding of the amino acid on the tRNA.  相似文献   

13.
Phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri activates a number of phenylalanine analogues (methionine, p-fluorophenylalanine, beta-phenylserine, beta-thien-2-ylalanine, 2-amino-4-methylhex-4-enoic acid and ochratoxin A) in the absence of tRNA, as demonstrated by Km and kcat of the ATP/PPi exchange reaction. Upon complexation with tRNA, AMP formation from the enzyme X tRNA complex in the presence of ATP, one of the above analogues or tyrosine, leucine, mimosine, N-benzyl-L- or N-benzyl-D-phenylalanine indicates activation of the analogues under conditions of aminoacylation. Natural noncognate amino acids are not transferred to tRNAPhe-C-C-A or tRNAPhe-C-C-A-(3'-NH2). This pretransfer proofreading mechanism, together with the comparatively low ratio of synthetic to successive hydrolytic steps, resembles the mechanism of liver enzymes of vertebrates. In contrast, eubacterial phenylalanyl-tRNA synthetases achieve the necessary fidelity by post-transfer proofreading, a corrective hydrolytic event after transfer to tRNAPhe. Diadenosine 5',5'-P1,P4-tetraphosphate synthesis is shown to be a common feature for phenylalanyl-tRNA synthetases from all three lineages of descent. The immunological approach demonstrates that aminoacyl-tRNA synthetases do not belong to the group of enzymes in gene expression with high structural conservation.  相似文献   

14.
To understand the relationship between tRNA architecture and specific aminoacylation by aminoacyl-tRNA synthetases, we performed kinetic assays of Escherichia coli tRNA(Pro) molecules containing single deoxynucleotide substitutions. We identified an important 2'-hydroxyl group at position U8 (of 22 positions probed). Chemical modification studies showed that this 2'-hydroxyl interacts with either the N1 or the exocyclic amine of G46 in a hydrogen bonding interaction that contributes 1.8 kcal/mol to the free energy of activation for aminoacylation. Molecular modeling of tRNA(Pro) supports the existence of this interaction. This is the first study to identify a specific ribose 2'-hydroxyl-base interaction in the core region of a tRNA molecule that makes a thermodynamically significant contribution to aminoacylation.  相似文献   

15.
The phenomenal accuracy of biological discrimination is due in many cases to specific proofreading mechanisms. We have previously developed a macroscopic theory of such mechanisms and applied it to the case of single-stage proofreading. In this article we apply the theory to systems with multiple stages of proofreading. A specific relationship between improved accuracy due to proofreading and the associated energy cost is given. This is a macroscopic relationship that must be satisfied regardless of the details of the underlying mechanisms. Five factors in the design of such systems are shown to influence their overall accuracy: (1) initial discrimination, (2) number of proofreading stages, (3) proofreading discrimination of each stage, (4) distribution of proofreading effort among the stages, and (5) total energy expended for proofreading. We show that there is an optimal distribution of proofreading effort that, for a given degree of accuracy, minimizes the energy cost of proofreading. We also provide a simple physical interpretation of this minimum condition. These results are used to examine proofreading in two experimental systems for which there is appropriate data available in the literature: the valyl-tRNA synthetase catalyzed misacylation of tRNAVal with threonine and the isoleucyl-tRNA synthetase catalyzed misacylation of tRNAIle with valine. The correlation between the magnitude of a discrimination factor and the size of the corresponding enzymatic cavity is discussed.  相似文献   

16.
Sequence comparisons have been combined with mutational and kinetic analyses to elucidate how the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase evolved. Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase involves two steps: activation of the tyrosine substrate by ATP to form an enzyme-bound tyrosyl-adenylate intermediate, and transfer of tyrosine from the tyrosyl-adenylate intermediate to tRNA(Tyr). Previous investigations indicate that the class I conserved KMSKS motif is involved in only the first step of the reaction (i.e. tyrosine activation). Here, we demonstrate that the class I conserved HIGH motif also is involved only in the tyrosine activation step. In contrast, one amino acid that is conserved in a subset of the class I aminoacyl-tRNA synthetases, Thr40, and two amino acids that are present only in tyrosyl-tRNA synthetases, Lys82 and Arg86, stabilize the transition states for both steps of the tRNA aminoacylation reaction. These results imply that stabilization of the transition state for the first step of the reaction by the class I aminoacyl-tRNA synthetases preceded stabilization of the transition state for the second step of the reaction. This is consistent with the hypothesis that the ability of aminoacyl-tRNA synthetases to catalyze the activation of amino acids with ATP preceded their ability to catalyze attachment of the amino acid to the 3' end of tRNA. We propose that the primordial aminoacyl-tRNA synthetases replaced a ribozyme whose function was to promote the reaction of amino acids and other small molecules with ATP.  相似文献   

17.
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.  相似文献   

18.
The selection of tRNAs by their cognate aminoacyl-tRNA synthetases is critical for ensuring the fidelity of protein synthesis. While nucleotides that comprise tRNA identity sets have been readily identified, their specific role in the elementary steps of aminoacylation is poorly understood. By use of a rapid kinetics analysis employing mutants in tRNA(His) and its cognate aminoacyl-tRNA synthetase, the role of tRNA identity in aminoacylation was investigated. While mutations in the tRNA anticodon preferentially affected the thermodynamics of initial complex formation, mutations in the acceptor stem or the conserved motif 2 loop of the tRNA synthetase imposed a specific kinetic block on aminoacyl transfer and decreased tRNA-mediated kinetic control of amino acid activation. The mechanistic basis of tRNA identity is analogous to fidelity control by DNA polymerases and the ribosome, whose reactions also demand high accuracy.  相似文献   

19.
Sepuri NB  Gorla M  King MP 《PloS one》2012,7(4):e35321
Aminoacyl tRNA synthetases play a central role in protein synthesis by charging tRNAs with amino acids. Yeast mitochondrial lysyl tRNA synthetase (Msk1), in addition to the aminoacylation of mitochondrial tRNA, also functions as a chaperone to facilitate the import of cytosolic lysyl tRNA. In this report, we show that human mitochondrial Kars (lysyl tRNA synthetase) can complement the growth defect associated with the loss of yeast Msk1 and can additionally facilitate the in vitro import of tRNA into mitochondria. Surprisingly, the import of lysyl tRNA can occur independent of Msk1 in vivo. This suggests that an alternative mechanism is present for the import of lysyl tRNA in yeast.  相似文献   

20.
The mode of recognition of tRNAs by aminoacyl-tRNA synthetases and translation factors is largely unknown in archaebacteria. To study this process, we have cloned the wild type initiator tRNA gene from the moderate halophilic archaebacterium Haloferax volcanii and mutants derived from it into a plasmid capable of expressing the tRNA in these cells. Analysis of tRNAs in vivo show that the initiator tRNA is aminoacylated but is not formylated in H. volcanii. This result provides direct support for the notion that protein synthesis in archaebacteria is initiated with methionine and not with formylmethionine. We have analyzed the effect of two different mutations (CAU-->CUA and CAU-->GAC) in the anticodon sequence of the initiator tRNA on its recognition by the aminoacyl-tRNA synthetases in vivo. The CAU-->CUA mutant was not aminoacylated to any significant extent in vivo, suggesting the importance of the anticodon in aminoacylation of tRNA by methionyl-tRNA synthetase. This mutant initiator tRNA can, however, be aminoacylated in vitro by the Escherichia coli glutaminyl-tRNA synthetase, suggesting that the lack of aminoacylation is due to the absence in H. volcanii of a synthetase, which recognizes the mutant tRNA. Archaebacteria lack glutaminyl-tRNA synthetase and utilize a two-step pathway involving glutamyl-tRNA synthetase and glutamine amidotransferase to generate glutaminyl-tRNA. The lack of aminoacylation of the mutant tRNA indicates that this mutant tRNA is not a substrate for the H. volcanii glutamyl-tRNA synthetase. The CAU-->GAC anticodon mutant is most likely aminoacylated with valine in vivo. Thus, the anticodon plays an important role in the recognition of tRNA by at least two of the halobacterial aminoacyl-tRNA synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号