首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected.  相似文献   

2.
We analyzed the roles of the individual measles virus (MV) surface glycoproteins in mediating functional and structural interactions with human CD46, the primary MV receptor. On one cell population, recombinant vaccinia virus vectors were used to produce the MV hemagglutinin (H) and fusion (F) glycoproteins. As fusion partner cells, various cell types were examined, without or with human CD46 (endogenous or recombinant vaccinia virus encoded). Fusion between the two cell populations was monitored by a quantitative reporter gene activation assay and by syncytium formation. MV glycoproteins promoted fusion with primate cells but not with nonprimate cells; recombinant CD46 rendered nonprimate cells competent for MV glycoprotein-mediated fusion. Markedly different fusion specificity was observed for another morbillivirus, canine distemper virus (CDV): recombinant CDV glycoproteins promoted fusion with primate and nonprimate cells independently of CD46. Fusion by the recombinant MV and CDV glycoproteins required coexpression of H plus F in either homologous or heterologous combinations. To assess the role of H versus F in determining the CD46 dependence of MV fusion, we examined the fusion specificities of cells producing heterologous glycoprotein combinations. The specificity of HMV plus FCDV paralleled that observed for the homologous MV glycoproteins: fusion occurred with primate cells but not with nonprimate cells unless they produced recombinant CD46. By contrast, the specificity of HCDV plus FMV paralleled that for the homologous CDV glycoproteins: fusion occurred with either primate or nonprimate cells with no dependence on CD46. Thus, for both MV and CDV, fusion specificity was determined by H. In particular, the results demonstrate a functional interaction between HMV and CD46. Flow cytometry and antibody coprecipitation studies provided a structural correlate to this functional interaction: CD46 formed a molecular complex with HMV but not with FMV or with either CDV glycoprotein. These results highlight the critical role of the H glycoprotein in determining MV specificity for CD46-positive cells.  相似文献   

3.
Canine distemper virus (CDV), a lymphotropic and neurotropic negative-stranded RNA virus of the Morbillivirus genus, causes a life-threatening disease in several carnivores, including domestic dogs. To identify the cellular receptor(s) involved in the uptake of CDV by susceptible cells, we isolated a monoclonal antibody (MAb K41) which binds to the cell surface and inhibits the CDV infection of several cell lines from various species. Pretreatment of cells with MAb K41 reduces the number of infectious centers and the size of the syncytia. Using affinity chromatography with MAb K41, we purified from HeLa and Vero cell extracts a 26-kDa protein which contained the amino acid sequence TKDEPQRETLK of human CD9, a member of the tetraspan transmembrane or transmembrane 4 superfamily of cell surface proteins. Transfection of NIH 3T3 or MDBK cells with a CD9 expression plasmid rendered these cells permissive for viral infection and raised virus production by a factor of 10 to 100. The mechanism involved is still unclear, since we were unable to detect direct binding of CDV to CD9 by using immunoprecipitation and a virus overlay protein binding assay. These findings indicate that human CD9 and its homologs in other species are necessary factors for the uptake of CDV by target cells, the formation of syncytia, and the production of progeny virus.  相似文献   

4.
Signaling lymphocytic activation molecule (SLAM, CD150) is the universal morbillivirus receptor. Based on the identification of measles virus (MV) hemagglutinin (H) amino acids supporting human SLAM-dependent cell entry, we mutated canine distemper virus (CDV) H and identified residues necessary for efficient canine SLAM-dependent membrane fusion. These residues are located in two nearby clusters in a new CDV H structural model. To completely abolish SLAM-dependent fusion, combinations of mutations were necessary. We rescued a SLAM-blind recombinant CDV with six mutations that did not infect ferret peripheral blood mononuclear cells while retaining full infectivity in epithelial cells.  相似文献   

5.
Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses.  相似文献   

6.
Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion   总被引:8,自引:0,他引:8  
Protein organization on the membrane of target cells may modulate HIV-1 transmission. Since the tetraspanin CD81 is associated to CD4, the receptor of HIV-1 envelope protein (Env; gp120/gp41), we have explored the possibility that this molecule may modulate the initial steps of HIV-1 infection. On the other hand, CD81 belongs to the tetraspanin family, which has been described as organizers of protein microdomains on the plasma membrane. Therefore, the role of CD81 and other related tetraspanin, CD9, on the cell-to-cell fusion process mediated by HIV-1 was studied. We found that anti-tetraspanin Abs enhanced the syncytia formation induced by HIV-1 envelope proteins and viral entry in human T lymphoblasts. In addition, anti-CD81 Abs triggered its clustering in patches, where CD4 and CXCR4 were included. Moreover, the knocking down of CD81 and CD9 expression resulted in an increase in syncytia formation and viral entry. Accordingly, overexpression of CD81 and CD9 rendered cells less susceptible to Env-mediated syncytia formation. These data indicate that CD9 and CD81 have an important role in membrane fusion induced by HIV-1 envelope.  相似文献   

7.
cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge.  相似文献   

8.
Measles virus (MV) enters cells either through the signaling lymphocyte activation molecule SLAM (CD150) expressed only in immune cells or through the ubiquitously expressed regulator of complement activation, CD46. To identify residues on the attachment protein hemagglutinin (H) essential for fusion support through either receptor, we devised a strategy based on analysis of morbillivirus H-protein sequences, iterative cycles of mutant protein production followed by receptor-based functional assays, and a novel MV H three-dimensional model. This model uses the Newcastle disease virus hemagglutinin-neuraminidase protein structure as a template. We identified seven amino acids important for SLAM- and nine for CD46 (Vero cell receptor)-induced fusion. The MV H three-dimensional model suggests (i) that SLAM- and CD46-relevant residues are located in contiguous areas in propeller beta-sheets 5 and 4, respectively; (ii) that two clusters of SLAM-relevant residues exist and that they are accessible for receptor contact; and (iii) that several CD46-relevant amino acids may be shielded from direct receptor contacts. It appears likely that certain residues support receptor-specific H-protein conformational changes. To verify the importance of the H residues identified with the cell-cell fusion assays for virus entry into cells, we transferred the relevant mutations into genomic MV cDNAs. Indeed, we were able to recover recombinant viruses, and we showed that these replicate selectively in cells expressing SLAM or CD46. Selectively receptor-blind viruses will be used to study MV pathogenesis and may have applications for the production of novel vaccines and therapeutics.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) infection of human macrophages can be inhibited by antibodies which bind to the tetraspanin protein CD63, but not by antibodies that bind to other members of the tetraspanin family. This inhibitory response was limited to CCR5 (R5)-tropic virus and was only observed using macrophages, but not T cells. Here, we show that recombinant soluble forms of the large extracellular domain (EC2) of human tetraspanins CD9, CD63, CD81, and CD151 produced as fusion proteins with glutathione S-transferase (GST) can all potently and completely inhibit R5 HIV-1 infection of macrophages with 50% inhibitory concentration values of 0.11 to 1.2 nM. Infection of peripheral blood mononuclear cells could also be partly inhibited, although higher concentrations of EC2 proteins were required. Inhibition was largely coreceptor independent, as macrophage infections by virions pseudotyped with CXCR4 (X4)-tropic HIV-1 or vesicular stomatitis virus (VSV)-G glycoproteins were also inhibited, but was time dependent, since addition prior to or during, but not after, virus inoculation resulted in potent inhibition. Incubation with tetraspanins did not decrease CD4 or HIV-1 coreceptor expression but did block virion uptake. Colocalization of fluorescently labeled tetraspanin EC2 proteins and HIV-1 virions within, and with CD4 and CXCR4 at the cell surfaces of, macrophages could be detected, and internalized tetraspanin EC2 proteins were directed to vesicular compartments that contained internalized dextran and transferrin. Collectively, the data suggest that the mechanism of inhibition of HIV-1 infection by tetraspanins is at the step of virus entry, perhaps via interference with binding and/or the formation of CD4-coreceptor complexes within microdomains that are required for membrane fusion events.  相似文献   

10.
Canine distemper virus (CDV) and measles virus (MV) cause severe illnesses in their respective hosts. The viruses display a characteristic cytopathic effect by forming syncytia in susceptible cells. For CDV, the proficiency of syncytium formation varies among different strains and correlates with the degree of viral attenuation. In this study, we examined the determinants for the differential fusogenicity of the wild-type CDV isolate 5804Han89 (CDV(5804)), the small- and large-plaque-forming variants of the CDV vaccine strain Onderstepoort (CDV(OS) and CDV(OL), respectively), and the MV vaccine strain Edmonston B (MV(Edm)). The cotransfection of different combinations of fusion (F) and hemagglutinin (H) genes in Vero cells indicated that the H protein is the main determinant of fusion efficiency. To verify the significance of this observation in the viral context, a reverse genetic system to generate recombinant CDVs was established. This system is based on a plasmid containing the full-length antigenomic sequence of CDV(OS). The coding regions of the H proteins of all CDV strains and MV(Edm) were introduced into the CDV and MV genetic backgrounds, and recombinant viruses rCDV-H(5804), rCDV-H(OL), rCDV-H(Edm), rMV-H(5804), rMV-H(OL), and rMV-H(OS) were recovered. Thus, the H proteins of the two morbilliviruses are interchangeable and fully functional in a heterologous complex. This is in contrast with the glycoproteins of other members of the family Paramyxoviridae, which do not function efficiently with heterologous partners. The fusogenicity, growth characteristics, and tropism of the recombinant viruses were examined and compared with those of the parental strains. All these characteristics were found to be predominantly mediated by the H protein regardless of the viral backbone used.  相似文献   

11.
Paramyxovirinae envelope glycoproteins constitute a premier model to dissect how specific and dynamic interactions in multisubunit membrane protein complexes can control deep-seated conformational rearrangements. However, individual residues that determine reciprocal specificity of the viral attachment and fusion (F) proteins have not been identified. We have developed an assay based on a pair of canine distemper virus (CDV) F proteins (strains Onderstepoort (ODP) and Lederle) that share approximately 95% identity but differ in their ability to form functional complexes with the measles virus (MV) attachment protein (H). Characterization of CDV F chimeras and mutagenesis reveals four residues in CDV F-ODP (positions 164, 219, 233, and 317) required for productive interaction with MV H. Mutating these residues to the Lederle type disrupts triggering of F-ODP by MV H without affecting functionality when co-expressed with CDV H. Co-immunoprecipitation shows a stronger physical interaction of F-ODP than F-Lederle with MV H. Mutagenesis of MV F highlights the MV residues homologous to CDV F residues 233 and 317 as determinants for physical glycoprotein interaction and fusion activity under homotypic conditions. In assay reversal, the introduction of sections of the CDV H stalk into MV H shows a five-residue fragment (residues 110-114) to mediate specificity for CDV F-Lederle. All of the MV H stalk chimeras are surface-expressed, show hemadsorption activity, and trigger MV F. Combining the five-residue H chimera with the CDV F-ODP quadruple mutant partially restores activity, indicating that the residues identified in either glycoprotein contribute interdependently to the formation of functional complexes. Their localization in structural models of F and H suggests that placement in particular of F residue 233 in close proximity to the 110-114 region of H is structurally conceivable.  相似文献   

12.
Partitioning of membrane proteins into various types of microdomains is crucial for many cellular functions. Tetraspanin‐enriched microdomains (TEMs) are a unique type of protein‐based microdomain, clearly distinct from membrane rafts, and important for several cellular processes such as fusion, migration and signaling. Paradoxically, HIV‐1 assembly/egress occurs at TEMs, yet the viral particles also incorporate raft lipids. Using different quantitative microscopy approaches, we investigated the dynamic relationship between TEMs, membrane rafts and HIV‐1 exit sites, focusing mainly on the tetraspanin CD9. Our results show that clustering of CD9 correlates with multimerization of the major viral structural component, Gag, at the plasma membrane. CD9 exhibited confined behavior and reduced lateral mobility at viral assembly sites, suggesting that Gag locally traps tetraspanins. In contrast, the raft lipid GM1 and the raft‐associated protein CD55, while also recruited to assembly/budding sites, were only transiently trapped in these membrane areas. CD9 recruitment and confinement were found to be partially dependent on cholesterol, while those of CD55 were completely dependent on cholesterol. Importantly, our findings support the emerging concept that cellular and viral components, instead of clustering at preexisting microdomain platforms, direct the formation of distinct domains for the execution of specific functions.  相似文献   

13.
Tetraspanins regulate the protrusive activities of cell membrane   总被引:1,自引:0,他引:1  
Tetraspanins have gained increased attention due to their functional versatility. But the universal cellular mechanism that governs such versatility remains unknown. Herein we present the evidence that tetraspanins CD81 and CD82 regulate the formation and/or development of cell membrane protrusions. We analyzed the ultrastructure of the cells in which a tetraspanin is either overexpressed or ablated using transmission electron microscopy. The numbers of microvilli on the cell surface were counted, and the radii of microvillar tips and the lengths of microvilli were measured. We found that tetraspanin CD81 promotes the microvillus formation and/or extension while tetraspanin CD82 inhibits these events. In addition, CD81 enhances the outward bending of the plasma membrane while CD82 inhibits it. We also found that CD81 and CD82 proteins are localized at microvilli using immunofluorescence. CD82 regulates microvillus morphogenesis likely by altering the plasma membrane curvature and/or the cortical actin cytoskeletal organization. We predict that membrane protrusions embody a common morphological phenotype and cellular mechanism for, at least some if not all, tetraspanins. The differential effects of tetraspanins on microvilli likely lead to the functional diversification of tetraspanins and appear to correlate with their functional propensity.  相似文献   

14.
Serological relationships among measles virus (MV), canine distemper virus (CDV), and rinderpest virus (RV), which constitute morbillivirus subgroup of paramyxoviridae, were investigated by immunoprecipitation and SDS-polyacrylamide gel electrophoresis for their major structural proteins, i.e., hemagglutinin (H), nucleocapsid (NC), fusion (F), and matrix (M) proteins. The molecular weights of the four structural proteins of MV and CDV were confirmed to correspond to those previously reported by several investigators. Structural proteins of RV were analyzed for the first time in the present study and found to have molecular weights of 74,000, 62,000, 44,000, and 40,000 for H, HC, F, and M proteins, respectively. By labeling with glucosamine, the presence of carbohydrate moiety was found in H protein for all the three viruses and in F protein of CDV. The serums from the convalescent animals infected with respective virus disclosed one-way cross pattern depending on the combinations of virus and antiserums, but failed to show the reciprocal cross reactivity. On the other hand, hyperimmune serums to respective virus showed the reciprocal cross-reactivity with the four structural proteins indicating that each of the major structural proteins possesses the antigen common to all three morbilliviruses.  相似文献   

15.
The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer.  相似文献   

16.
Tetraspanins regulate cell migration, sperm–egg fusion, and viral infection. Through interactions with one another and other cell surface proteins, tetraspanins form a network of molecular interactions called the tetraspanin web. In this study, we use single-molecule fluorescence microscopy to dissect dynamics and partitioning of the tetraspanin CD9. We show that lateral mobility of CD9 in the plasma membrane is regulated by at least two modes of interaction that each exhibit specific dynamics. The majority of CD9 molecules display Brownian behavior but can be transiently confined to an interaction platform that is in permanent exchange with the rest of the membrane. These platforms, which are enriched in CD9 and its binding partners, are constant in shape and localization. Two CD9 molecules undergoing Brownian trajectories can also codiffuse, revealing extra platform interactions. CD9 mobility and partitioning are both dependent on its palmitoylation and plasma membrane cholesterol. Our data show the high dynamic of interactions in the tetraspanin web and further indicate that the tetraspanin web is distinct from raft microdomains.  相似文献   

17.
CD3/CD28-induced activation of the PI3/Akt kinase pathway and proliferation is impaired in T cells after contact with the measles virus (MV) glycoprotein (gp) complex. We now show that this signal also impairs actin cytoskeletal remodeling in T cells, which loose their ability to adhere and to promote microvilli formation. MV exposure results in an almost complete collapse of membrane protrusions associated with reduced phosphorylation levels of cofilin and ezrin/radixin/moesin (ERM) proteins. Consistent with their inability to activate Cdc42 and Rac1 in response to the ligation of CD3/CD28, T cells exposed to MV fail to acquire a morphology consistent with spreading and lamellopodia formation. In spite of these impairments of cytoskeleton-driven morphological alterations, these cells are recruited into conjugates with dendritic cells as efficiently as control T cells. The signal elicited by MV, however, prevents T cells to polarize as documented by a failure to redistribute the microtubule organizing center toward the synapse. Moreover, CD3 cannot be efficiently clustered and redistributed to the central region of the immunological synapse. Thus, by inducing microvillar collapse and interfering with cytoskeletal remodeling, MV signaling disturbs the ability of T cells to adhere, spread, and cluster receptors essential for sustained T-cell activation.  相似文献   

18.
Human herpesvirus 6 (HHV-6) is a T lymphotropic herpes virus that is categorized into two variants, A (HHV-6A) and B (HHV-6B), on the basis of distinct genetic, immunological and biological characteristics. HHV-6 uses human CD46 as a cellular receptor. Without viral replication, HHV-6A induces cell–cell fusion between cells expressing human CD46. Some HHV-6B strains can also induce CD46-mediated cell–cell fusion. A multiple glycoprotein complex composed of glycoprotein (g) H-gL complexed with gQ1 and gQ2 has been identified, and found to be a viral ligand for the human CD46 receptor. Moreover, a novel complex consisting of gH/gL/gO, which does not associate with CD46, has also been identified. The evidence suggests that an additional receptor for HHV-6B or both variants may play a role in determining the cell tropism of this virus. Finally, cholesterol in the HHV-6 envelope and plasma membrane of the host cells plays an important role in HHV-6 entry, although how this function relates to cell–envelope fusion remains to be elucidated.  相似文献   

19.
CD46, which serves as a receptor for measles virus (MV; strain Edmonston), is rapidly downregulated from the cell surface after contact with viral particles or infected cells. We show here that the same two CD46 complement control protein (CCP) domains responsible for primary MV attachment mediate its downregulation. Optimal downregulation efficiency was obtained with CD46 recombinants containing CCP domains 1 and 2, whereas CCP 1, alone and duplicated, induced a slight downregulation. Using persistently infected monocytic/promyelocytic U937 cells which release very small amounts of infectious virus, and uninfected HeLa cells as contact partners, we then showed that during contact the formation of CD46-containing patches and caps precedes CD46 internalization. Nevertheless, neither substances inhibiting capping nor the fusion-inhibiting peptide Z-D-Phe-L-Phe-Gly-OH (FIP) blocked CD46 downregulation. Thus, CD46 downregulation can be uncoupled from fusion and subsequent virus uptake. Interestingly, in that system cell-cell contacts lead to a remarkably efficient infection of the target cells which is only partially inhibited by FIP. The finding that the contact of an infected with uninfected cells results in transfer of infectious viral material without significant (complete) fusion of the donor with the recipient cell suggests that microfusion events and/or FIP-independent mechanisms may mediate the transfer of MV infectivity from cell to cell.  相似文献   

20.
Here we demonstrate that multiple tetraspanin (transmembrane 4 superfamily) proteins are palmitoylated, in either the Golgi or a post-Golgi compartment. Using CD151 as a model tetraspanin, we identified and mutated intracellular N-terminal and C-terminal cysteine palmitoylation sites. Simultaneous mutations of C11, C15, C242, and C243 (each to serine) eliminated >90% of CD151 palmitoylation. Notably, palmitoylation had minimal influence on the density of tetraspanin protein complexes, did not promote tetraspanin localization into detergent-resistant microdomains, and was not required for CD151-alpha 3 beta 1 integrin association. However, the CD151 tetra mutant showed markedly diminished associations with other cell surface proteins, including other transmembrane 4 superfamily proteins (CD9, CD63). Thus, palmitoylation may be critical for assembly of the large network of cell surface tetraspanin-protein interactions, sometimes called the "tetraspanin web." Also, compared with wild-type CD151, the tetra mutant was much more diffusely distributed and showed markedly diminished stability during biosynthesis. Finally, expression of the tetra-CD151 mutant profoundly altered alpha 3 integrin-deficient kidney epithelial cells, such that they converted from a dispersed, elongated morphology to an epithelium-like cobblestone clustering. These results point to novel biochemical and biological functions for tetraspanin palmitoylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号