首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures that the different trajectories diverge during the early stages of the simulations and only converge later as more and more interproton distance restraints are satisfied. The average backbone atomic r.m.s. difference between the converged structures is 2.2 +/- 0.3 A for crambin (nine structures), 2.4 +/- 0.3 A for CPI (eight structures) and 2.5 +/- 0.2 A for BSPI-2 (five structures). The backbone atomic r.m.s. difference between the mean structures derived by averaging the coordinates of the converged structures and the corresponding X-ray structures is 1.2 A for crambin, 1.6 A for CPI and 1.7 A for BSPI-2.  相似文献   

2.
The solution structure of the 64 residue structured domain (residues 20-83) of barley serine proteinase inhibitor 2 (BSPI-2) is determined on the basis of 403 interproton distance, 34 phi backbone torsion angle and 26 hydrogen bonding restraints derived from n.m.r. measurements. A total of 11 converged structures were computed using a metric matrix distance geometry algorithm and refined by restrained molecular dynamics. The average rms difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.2 A for the backbone atoms and 2.1 +/- 0.1 A for all atoms. The overall structure, which is almost identical to that found by X-ray crystallography, is disc shaped and consists of a central four component mixed parallel and antiparallel beta-sheet flanked by a 13 residue alpha-helix on one side and the reactive site loop on the other.  相似文献   

3.
The polypeptide fold of the 79-residue globular domain of chicken histone H5 (GH5) in solution has been determined by the combined use of distance geometry and restrained molecular dynamics calculations. The structure determination is based on 307 approximate interproton distance restraints derived from n.m.r. measurements. The structure is composed of a core made up of residues 3-18, 23-34, 37-60 and 71-79, and two loops comprising residues 19-22 and 61-70. The structure of the core is well defined with an average backbone atomic r.m.s. difference of 2.3 +/- 0.3 A between the final eight converged restrained dynamics structures and the mean structure obtained by averaging their coordinates best fitted to the core residues. The two loops are also well defined locally but their orientation with respect to the core could not be determined as no long range ([i-j[ greater than 5) proton-proton contacts could be observed between the loop and core residues in the two-dimensional nuclear Overhauser enhancement spectra. The structure of the core is dominated by three helices and has a similar fold to the C-terminal DNA binding domain of the cAMP receptor protein.  相似文献   

4.
The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 phi backbone and 21 chi 1 side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67 +/- 0.12 A for the backbone atoms and 0.90 +/- 0.17 A for all atoms. The core of the protein is formed by a triple-stranded antiparallel beta-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel beta-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel beta-sheet are connected by a long exposed loop (residues 17-30). A number of side-chain interactions are discussed in light of the structure.  相似文献   

5.
The solution structure of the self-complementary hexamer 5'r(GCAUGC)2 is investigated by means of nuclear magnetic resonance spectroscopy and restrained molecular dynamics. The proton resonances are assigned in a sequential manner, and a set of 110 approximate interproton distance restraints are derived from the two-dimensional nuclear Overhauser enhancement spectra. These distances are used as the basis of a structure refinement by restrained molecular dynamics in which the experimental restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight restrained molecular dynamics simulations are carried out, four starting from a structure with regular A-type geometry and four from one with regular B-type geometry. The atomic root mean square (rms) difference between the initial structures is 3.2 A. In the case of all eight simulations, convergence is achieved both globally and locally to a set of very similar A-type structures with an average atomic rms difference between them of 0.8 +/- 0.2 A. Further, the atomic rms differences between the restrained dynamics structures obtained by starting out from the same initial structures but with different random number seeds for the assignment of the initial velocities are the same as those between the restrained dynamics structures starting out from the two different initial structures. These results suggest that the restrained dynamics structures represent good approximations of the solution structure. The converged structures exhibit clear sequence-dependent variation in some of the helical parameters, in particular helix twist, roll, slide, and propellor twist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The three-dimensional solution-state structure is reported for the zinc-substituted form of rubredoxin (Rd) from the marine hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100 degrees C. Structures were generated with DSPACE by a hybrid distance geometry (DG)-based simulated annealing (SA) approach that employed 403 nuclear Overhauser effect (NOE)-derived interproton distance restraints, including 67 interresidue, 124 sequential (i-j = 1), 75 medium-range (i-j = 2-5), and 137 long-range (i-j > 5) restraints. All lower interproton distance bounds were set at the sum of the van Der Waals radii (1.8 A), and upper bounds of 2.7 A, 3.3 A, and 5.0 A were employed to represent qualitatively observed strong, medium, and weak NOE cross peak intensities, respectively. Twenty-three backbone-backbone, six backbone-sulfur (Cys), two backbone-side chain, and two side chain-side chain hydrogen bond restraints were include for structure refinement, yielding a total of 436 nonbonded restraints, which averages to > 16 restraints per residue. A total of 10 structures generated from random atom positions and 30 structures generated by molecular replacement using the backbone coordinates of Clostridium pasteurianum Rd converged to a common conformation, with the average penalty (= sum of the square of the distance bounds violations; +/- standard deviation) of 0.024 +/- 0.003 A2 and a maximum total penalty of 0.035 A2. Superposition of the backbone atoms (C, C alpha, N) of residues A1-L51 for all 40 structures afforded an average pairwise root mean square (rms) deviation value (+/- SD) of 0.42 +/- 0.07 A. Superposition of all heavy atoms for residues A1-L51, including those of structurally undefined external side chains, afforded an average pairwise rms deviation of 0.72 +/- 0.08 A. Qualitative comparison of back-calculated and experimental two-dimensional NOESY spectra indicate that the DG/SA structures are consistent with the experimental spectra. The global folding of P. furiosus Zn(Rd) is remarkably similar to the folding observed by X-ray crystallography for native Rd from the mesophilic organism C. pasteurianum, with the average rms deviation value for backbone atoms of residues A1-L51 of P. furiosus Zn(Rd) superposed with respect to residues K2-V52 of C. pasteurianum Rd of 0.77 +/- 0.06 A. The conformations of aromatic residues that compose the hydrophobic cores of the two proteins are also similar. However, P. furiosus Rd contains several unique structural elements, including at least four additional hydrogen bonds and three potential electrostatic interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The solution structure of the self-complementary DNA decamer 5'd(CTGGATCCAG)2 comprising the specific target site for the restriction endonuclease BamH1 is investigated by using nuclear magnetic resonance sectroscopy and restrained molecular dynamics. With the exception of the H5'/H5" sugar proton resonances, all the nonexchangeable proton resonances are assigned sequentially by using pure-phase absorption two-dimensional nuclear Overhauser enhancement spectroscopy. From the time dependence of the nuclear Overhauser effects a set of 160 approximate interproton distances is determined and used as the basis of a structure refinement employing restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 5.7 A]. In both cases convergence is achieved to very similar B-type structures with an atomic rms difference of 0.9 A which is comparable to the rms fluctuations of the atoms about their average positions. In addition, the rms difference between the experimental and calculated values of the interproton distances for both average restrained dynamics structures is approximately 0.3 A. These results suggest that the converged restrained molecular dynamics structures represent reasonable approximations of the solution structure. The average restrained dynamics structures exhibit clear sequence-dependent variations of torsion angles and helical parameters. In addition, the structures exhibit a small bend of around 10-20 degrees at the second (TpG) and eighth (CpA) base pair steps. This can be attributed to the positive base roll angles and large base pair slide values at the two Pyr-Pur steps. The central core of the decamer comprising the six-base recognition site for BamH1 (GGATCC), however, is straight.  相似文献   

8.
The applicability of restrained molecular dynamics for the determination of three-dimensional protein structures on the basis of short interproton distances (less than 4 A) that can be realistically determined from nuclear magnetic resonance measurements in solution is assessed. The model system used is the 1.2 A resolution crystal structure of the 46 residue protein crambin, from which a set of 240 approximate distance restraints, divided into three ranges (2.5 +/- 0.5, 3.0+0.5(-1.0) and 4 +/- 1 A), is derived. This interproton distance set comprises 159 short-range ([i-j] less than or equal to 5) and 56 ([i-j] greater than 5) long-range inter-residue distances and 25 intra-residue distances. Restrained molecular dynamics are carried out using a number of different protocols starting from two initial structures: a completely extended beta-strand; and an extended structure with two alpha-helices in the same positions as in the crystal structure (residues 7 to 19, and 23 to 30) and all other residues in the form of extended beta-strands. The root-mean-square (r.m.s.) atomic differences between these two initial structures and the crystal structure are 43 A and 23 A, respectively. It is shown that, provided protocols are used that permit the secondary structure elements to form at least partially prior to folding into a tertiary structure, convergence to the correct final structure, both globally and locally, is achieved. The r.m.s. atomic differences between the converged restrained dynamics structures and the crystal structure range from 1.5 to 2.2 A for the backbone atoms and from 2.0 to 2.8 A for all atoms. The r.m.s. atomic difference between the X-ray structure and the structure obtained by first averaging the co-ordinates of the converged restrained dynamics structures is even smaller: 1.0 A for the backbone atoms and 1.6 A for all atoms. These results provide a measure with which to judge future experimental results on proteins whose crystal structures are unknown. In addition, from an examination of the dynamics trajectories, it is shown that the convergence pathways followed by the various simulations are different.  相似文献   

9.
The solution structure of insectotoxin 15A (35 residues) from scorpion Buthus eupeus was determined on the basis of 386 interproton distance restraints 12 hydrogen-bonding restraints and 113 dihedral angle restraints derived from 1H NMR experiments. A group of 20 structures was calculated with the distance geometry program DIANA followed by the restrained energy minimization with the program CHARMM. The atomic RMS distribution about the mean coordinate position is 0.64 +/- 0.11 A for the backbone atoms and 1.35 +/- 0.20 A for all atoms. The structure contains an alpha-helix (residues 10-20) and a three-stranded antiparallel beta-sheet (residues 2-5, 24-28 and 29-33). A pairing of the eight cysteine residues of insectotoxin 15A was established basing on NMR data. Three disulfide bridges (residues 2-19, 16-31 and 20-33) connect the alpha-helix with the beta-sheet, and the fourth one (5-26) joins beta-strands together. The spatial fold of secondary structure elements (the alpha-helix and the beta-sheet) of the insectotoxin 15A is very similar to those of the other short and long scorpion toxins in spite of a low (about 20%) sequence homology.  相似文献   

10.
The solution structure of the self-complementary dodecamer 5'd(CGCGPATTCGCG)2, containing a purine-thymine base pair within the hexameric canonical recognition site GAATTC for the restriction endonuclease EcoRI, is investigated by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Nonexchangeable and exchangeable protons are assigned in a sequential manner. A set of 228 approximate interproton distance restraints are derived from two-dimensional nuclear Overhauser enhancement spectra recorded at short mixing times. These distances are used as the basis for refinement using restrained molecular dynamics in which the interproton distance restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight calculations are carried out, four starting from classical A-DNA and four from classical B-DNA. In all cases convergence to very similar B-type structures is achieved with an average atomic root mean square (rms) difference between the eight converged structures of 0.7 +/- 0.2 A, compared to a value of 6.5 A for that between the two starting structures. It is shown that the introduction of the purine-thymine mismatch does not result in any significant distortion of the structure. The variations in the helical parameters display a clear sequence dependence. The variation in helix twist and propeller twist follows Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. Overall the structure is straight. Closer examination, however, reveals that the central 5 base pair steps describe a smooth bend directed toward the major groove with a radius of curvature of approximately 38 A, which is compensated by two smaller kinks in the direction of the minor groove at base pair steps 3 and 9. These features can be explained in terms of the observed variation in roll and slide.  相似文献   

11.
The influence of the stereospecific assignments of beta-methylene protons and the classification of chi 1 torsion angles on the definition of the three-dimensional structures of proteins determined from NMR data is investigated using the sea anemone protein BDS-I (43 residues) as a model system. Two sets of structures are computed. The first set comprises 42 converged structures (denoted STEREO structures) calculated on the basis of the complete list of restraints derived from the NMR data, consisting of 489 interproton and 24 hydrogen bonding distance restraints, supplemented by 23 phi backbone and 21 chi 1 side chain torsion angle restraints. The second set comprises 31 converged structures (denoted NOSTEREO structures) calculated from a reduced data set in which those restraints arising from stereospecific assignments, and the corresponding chi 1 torsion angle restraints, are explicitly omitted. The results show that the inclusion of the stereospecific restraints leads to a significant improvement in the definition of the structure of BDS-I, both with respect to the backbone and the detailed arrangement of the side chains. Average atomic rms differences between the individual structures and the mean structures for the backbone atoms are 0.67 +/- 0.12 A and 0.93 +/- 0.16 A for the STEREO and NOSTEREO structures, respectively; the corresponding values for all atoms are 0.90 +/- 0.17 A and 1.17 +/- 0.17 A, respectively. In addition, while the overall fold remains unchanged, there is a small but significant atomic displacement between the two sets of structures.  相似文献   

12.
A comparison of the solution n.m.r. structures of barley serine protease inhibitor 2 (BSPI-2) with the X-ray structures of both subtilisin complexed and native BSPI-2 is presented. It is shown that the n.m.r. and X-ray structures are very similar in terms of overall shape, size, polypeptide fold and secondary structure. The average atomic rms difference between the 11 restrained dynamics structures on the one hand and the two X-ray structures on the other is 1.9 +/- 0.2 A for the backbone atoms and 3.0 +/- 0.3 A for all atoms. The corresponding values for the restrained energy minimized mean dynamics structure are 1.5 and 2.4 A, respectively.  相似文献   

13.
The solution conformation of the self-complementary RNA-DNA hybrid hexamer 5'-[r(GCA)d(TGC)]2 is investigated by NMR spectroscopy and restrained molecular dynamics. The 1H-NMR spectrum is assigned in a sequential manner using two-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser enhancement spectroscopy. From the latter a set of 178 approximate interproton distance restraints are determined and used as the basis of a structure refinement by restrained molecular dynamics. Eight independent calculations are carried out, four from a classical A-type geometry and four from a classical B-type one. Convergence is achieved to very similar A-type structures with an average atomic root mean square difference between them of 1.0 +/- 0.2 A. The converged structures exhibit variations in helical parameters similar to those found previously for the analogue RNA hexamer 5'-r(GCAUGC)2 [(1988) Biochemistry 27, 1735-1743].  相似文献   

14.
A M Gronenborn  G M Clore 《Biochemistry》1989,28(14):5978-5984
The relative contributions of the interproton distance restraints derived from nuclear Overhauser enhancement measurements and of the empirical energy function in the determination of oligonucleotide structures by restrained molecular dynamics are investigated. The calculations are based on 102 intraresidue and 126 interresidue interproton distance restraints derived from short mixing time two-dimensional nuclear Overhauser enhancement data on the dodecamer 5'd(CGCGPATTCGCG)2 [Clore, G.M., Oschkinat, H., McLaughlin, L.W., Benseler, F., Scalfi Happ, C., Happ, E., & Gronenborn, A.M. (1988) Biochemistry 27, 4185-4197]. Eight interproton distance restraint lists were made up with errors ranging from -0.1/+0.2 to -1.2/+1.3 A for r less than 2.5 A and from -0.2/+0.3 to -1.3/+1.4 A for r greater than or equal to 2.5 A. These restraints were incorporated into the total energy function of the system in the form of square-well potentials with force constants set sufficiently high to ensure that the deviations between calculated distances and experimental restraints were very small (average interproton distance rms deviation of less than 0.06 A). For each data set, six calculations were carried out, three starting from classical A-DNA and three from classical B-DNA. The results show that structural changes occurring during the course of restrained molecular dynamics and the degree of structural convergence are determined by the interproton distance restraints. All the structures display similar small deviations from idealized geometry and have the same values for the nonbonding energy terms comprising van der Waals, electrostatic, and hydrogen-bonding components. Thus, the function of the empirical energy function is to maintain near perfect stereochemistry and nonbonded interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The solution conformation of the antibacterial polypeptide cecropin A from the Cecropia moth is investigated by nuclear magnetic resonance (NMR) spectroscopy under conditions where it adopts a fully ordered structure, as judged by previous circular dichroism studies [Steiner, H. (1982) FEBS Lett. 137, 283-287], namely, 15% (v/v) hexafluoroisopropyl alcohol. By use of a combination of two-dimensional NMR techniques the 1H NMR spectrum of cecropin A is completely assigned. A set of 243 approximate interproton distance restraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 32 distance restraints for the 16 intrahelical hydrogen bonds identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing [Nilges, M., Clore, G.M., & Gronenborn, A.M. (1988) FEBS Lett. 229, 317-324]. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Seven independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 21 calculated structures satisfy the experimental restraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 21 converged structure indicates that there are two helical regions extending from residues 5 to 21 and from residues 24 to 37 which are very well defined in terms of both atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 1 A. The long axes of the two helices lie in two planes, which are at an angle of 70-100 degrees to each other. The orientation of the helices within these planes, however, cannot be determined due to the paucity of NOEs between the two helices.  相似文献   

16.
A direct comparison of the metric matrix distance geometry and restrained molecular dynamics methods for determining three-dimensional structures of proteins on the basis of interproton distances is presented using crambin as a model system. It is shown that both methods reproduce the overall features of the secondary and tertiary structure (shape and polypeptide fold). The region of conformational space sampled by the converged structures generated by the two methods is similar in size, and in both cases the converged structures are distributed about mean structures which are closer to the X-ray structure than any of the individual structures. The restrained molecular dynamics structures are superior to those obtained from distance geometry as regards local backbone conformation, side chain positions and non-bonding energies.  相似文献   

17.
The solution structure of the self-complementary DNA hexamer 5'd(GCATGC)2 comprising the specific target site for the restriction endonuclease Sph 1 is investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics. All the nonexchangeable proton resonances are assigned sequentially, and from time-dependent nuclear Overhauser enhancement measurements a set of 158 approximate interproton distances are determined. These distances are used as the basis of a structure refinement using restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained molecular dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 3.3 A]. In both cases convergence is achieved to essentially identical structures satisfying the experimental restraints and having a root mean square difference of only 0.3 A between them, which is within the rms fluctuations of the atoms about their average positions. These results suggest that the restrained molecular dynamics structures represent reasonable approximations of the solution structure. The converged structures are of the B type and exhibit clear sequence-dependent variations of helical parameters, some of which follow Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. In addition, the converged restrained dynamics structures appear bent with a radius of curvature of approximately 20 A. This bending appears to be due almost entirely to the large positive base roll angles, particularly at the Pyr-Pur steps. Further, the global and local helix axes are not coincident, and the global helix axis represents a superhelical axis which the bent DNA, when extended into an "infinite" helix by repeated translation and rotation, wraps around.  相似文献   

18.
M Cai  E G Bradford  R Timkovich 《Biochemistry》1992,31(36):8603-8612
1H NMR spectroscopy and solution structure computations have been used to examine ferrocytochrome c-551 from Pseudomonas stutzeri (ATCC 17588). Resonance assignments are proposed for all main-chain and most side-chain protons. Distance constraints were determined on the basis of nuclear Overhauser enhancements between pairs of protons. Dihedral angle constraints were determined from estimates of scaler coupling constants. Twenty-four structures were calculated by distance geometry and refined by energy minimization and simulated annealing on the basis of 1033 interproton distance and 57 torsion angle constraints. Both the main-chain and side-chain atoms are well defined except for a loop region around residues 34-40, the first two residues at the N-terminus and the last two at the C-terminus, and some side chains located on the molecular surface. The average root mean squared deviation in position for equivalent atoms between the 24 individual structures and the mean structure obtained by averaging their coordinates is 0.54 +/- 0.08 A for the main-chain atoms and 0.97 +/- 0.09 A for all non-hydrogen atoms of residues 3-80 plus the heme group. These structures were compared to the X-ray crystallographic structure of an analogous protein, cytochrome c-551 from Pseudomonas aeruginosa [Matsuura, Takano, & Dickerson (1982) J. Mol. Biol. 156, 389-409). The main-chain folding patterns are very consistent, but there are some differences. The largest difference is in a surface loop segment from residues 34 to 40.  相似文献   

19.
The three-dimensional solution structure of a 51-residue synthetic peptide comprising the dihydrolipoamide dehydrogenase (E3)-binding domain of the dihydrolipoamide succinyltransferase (E2) core of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli has been determined by nuclear magnetic resonance spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure is based on 630 approximate interproton distance and 101 torsion angle (phi, psi, chi 1) restraints. A total of 56 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions for residues 12-48 of the synthetic peptide is 1.24 A for the backbone atoms, 1.68 A for all atoms, and 1.33 A for all atoms excluding the six side chains which are disordered at chi 1 and the seven which are disordered at chi 2; when the irregular partially disordered loop from residues 31 to 39 is excluded, the rms distribution drops to 0.77 A for the backbone atoms, 1.55 A for all atoms, and 0.89 A for ordered side chains. Although proton resonance assignments for the N-terminal 11 residues and the C-terminal 3 residues were obtained, these two segments of the polypeptide are disordered in solution as evidenced by the absence of nonsequential nuclear Overhauser effects. The solution structure of the E3-binding domain consists of two parallel helices (residues 14-23 and 40-48), a short extended strand (24-26), a five-residue helical-like turn, and an irregular (and more disordered) loop (residues 31-39). This report presents the first structure of an E3-binding domain from a 2-oxo acid dehydrogenase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D 1H NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and muO-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18+/-0.05 A for the backbone atoms and 1.39+/-0.33 A for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号