首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
During ATP hydrolysis, the gammaepsilon c10 complex (gamma and epsilon subunits and a c subunit ring formed from 10 monomers) of F0F1 ATPase (ATP synthase) rotates relative to the alpha3beta3delta ab2 complex, leading to proton transport through the interface between the a subunit and the c subunit ring. In this study, we replaced the two pertinent residues for proton transport, cAsp-61 and aArg-210 of the c and a subunits, respectively. The mutant enzymes exhibited lower ATPase activities than that of the wild type but exhibited ATP-dependent rotation in planar membranes, in which their original assemblies are maintained. The mutant enzymes were defective in proton transport, as shown previously. These results suggest that proton transport can be separated from rotation in ATP hydrolysis, although rotation ensures continuous proton transport by bringing the cAsp-61 and aArg-210 residues into the correct interacting positions.  相似文献   

3.
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function.  相似文献   

4.
We have analyzed the biochemical properties of a nonviable simian virus 40 (SV40) mutant encoding a large T antigen (T) bearing an amino acid substitution (Pro-584-Leu) in its hydrophobic region. Mutant 5080 has an altered cell type specificity for transformation (transforming mouse C3H10T1/2 but not rat REF52 cells), is defective for viral DNA replication, and encodes a T that is unable to form a complex with the cellular p53 protein (K. Peden, A. Srinivasan, J. Farber, and J. Pipas, Virology 168:13-21, 1989). In this article, we show that 5080-transformed C3H10T1/2 cell lines express an altered T that is synthesized at a significantly higher rate but with a shorter half-life than normal T from wild-type SV40-transformed cells. 5080 T did not oligomerize beyond 5 to 10S in size compared with normal T, which oligomerized predominantly to 14 to 20S species. In addition, the 5080 T complex had significantly decreased ATPase activity and had a 10-fold-lower level of in vivo phosphorylation compared with that of normal T. Two-dimensional phosphopeptide analysis indicated several changes in the specific 32P labeling pattern, with altered phosphorylation occurring at both termini of the mutant protein compared with the wild-type T. Loss of p53 binding is therefore concomitant with changes in ATPase activity, oligomerization, stability, and in vivo phosphorylation of T and can be correlated with defective replication and restricted transformation functions. That so many biochemical changes are associated with a single substitution in the hydrophobic region of T is consistent with its importance in regulating higher-order structural and functional relationships in SV40 T.  相似文献   

5.
Hybrid membrane particles from two mutants of Escherichia coli K12, Bv4 and K11, defective in oxidative phosphorylation, have been prepared, in which ATP-driven membrane energization is restored. A soluble factor of mutant K11 was found to have properties similar to parental crude coupling factor, ATPase (EC 3.6.1.3). Membrane particles of this mutant could not be reconstituted by parental coupling factor. Either parental coupling factor, or the soluble factor of mutant K11 could reconstitute both respiration-driven and ATP-driven energization to membrane particles of mutant Bv14 or to parental particles depleted of ATPase. Mutant Bv4 was found to be devoid of coupoing factor activity, while retaining the ability to hydrolyze ATP. Both mutants possess an ATPase with an altered binding to the membrane. Mutant K11 is impaired in respiration-driven amino acid transport, in contrast to mutant Bv4. The three major subunits of parental Escherichia coli ATPase have been isolated and antibodies have been prepared against these subunits. Antibodies against the largest subunit (alpha component) or against the intact catalytic subunits (alpha + beta components) inhibit both ATP-Pi exchange in the parent organism as well as ATP hydrolytic activity in parent and mutants. Antibodies against the two other subunits (beta or gamma components) also inhibit these two reactions, but were found to be less effective. Mutant N144, which lacks ATPase activity, shows no precipitin lines with anti-alpha, anti-beta, anti-gamma, or anti (alpha + beta) preparations. In contrast, mutants Bv4 and K11, exhibit cross-reactivity with all of the antisera.  相似文献   

6.
The Saccharomyces cerevisiae Rad50-Mre11-Xrs2 complex plays a central role in the cellular response to DNA double strand breaks. Rad50 has a globular ATPase head domain with a long coiled-coil tail. DNA binding by Rad50 is ATP-dependent and the Rad50-Mre11-Xrs2 complex possesses DNA unwinding and endonuclease activities that are regulated by ATP. Here we have examined the role of the Rad50 Walker type A ATP binding motif in DNA double strand break repair by a combination of genetic and biochemical approaches. Replacement of the conserved lysine residue within the Walker A motif with alanine, glutamate, or arginine results in the same DNA damage sensitivity and homologous recombination defect as the rad50 deletion mutation. The Walker A mutations also cause a deficiency in non-homologous end-joining. As expected, complexes containing the rad50 Walker A mutant proteins are defective in ATPase, ATP-dependent DNA unwinding, and ATP-stimulated endonuclease activities. Although the DNA end-bridging activity of the Rad50-Mre11-Xrs2 complex is ATP-independent, the end-bridging activity of complexes containing the rad50 Walker A mutant proteins is salt-sensitive. These results provide a molecular explanation for the observed in vivo defects of the rad50 Walker mutant strains and reveal a novel ATP-independent function for Rad50 in DNA end-bridging.  相似文献   

7.
We introduced mutations to test the function of the conserved amino-terminal region of the gamma subunit from the Escherichia coli ATP synthase (F0F1-ATPase). Plasmid-borne mutant genes were expressed in an uncG strain which is deficient for the gamma subunit (gamma Gln-14-->end). Most of the changes, which were between gamma Ile-19 and gamma Lys-33, gamma Asp-83 and gamma Cys-87, or at gamma Asp-165, had little effect on growth by oxidative phosphorylation, membrane ATPase activity, or H+ pumping. Notable exceptions were gamma Met-23-->Arg or Lys mutations. Strains carrying these mutations grew only very slowly by oxidative phosphorylation. Membranes prepared from the strains had substantial levels of ATPase activity, 100% compared with wild type for gamma Arg-23 and 65% for gamma Lys-23, but formed only 32 and 17%, respectively, of the electrochemical gradient of protons. In contrast, other mutant enzymes with similar ATPase activities (including gamma Met-23-->Asp or Glu) formed H+ gradients like the wild type. Membranes from the gamma Arg-23 and gamma Lys-23 mutants were not passively leaky to protons and had functional F0 sectors. These results suggested that substitution by positively charged side chains at position 23 perturbed the energy coupling. The catalytic sites of the mutant enzymes were still regulated by the electrochemical H+ gradient but were inefficiently coupled to H+ translocation in both ATP-dependent H+ pumping and delta mu H+ driven ATP synthesis.  相似文献   

8.
Dicyclohexylcarbodiimide-resistant mutants of Escherichia coli were isolated and characterized In one mutant the unc genes and affects the membrane-integrated part of the ATP synthetase. The sensitivity of ATP synthetase functions to N,N' -dicyclohexylcarbodiimide was compared in wild-type and mutant membranes. The membrane-integrated part of the wild-type ATP synthetase is highly sensitive to ATP-dependent membrane energization and restoration of lactate-dependent energization of ATPase-depleted membranes. In mutant membranes this concentration has only a slight effect on these activities whereas a severe inhibition is obtained at 200 muM.Using the highly water-soluble 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide theactivities of wild-type and mutant membranes are inhibited to the same extent. TheATP synthetase of wild-type and mutant was partially purified and incorporated muM. Uinto liposomes. These showed an uncoupler-sensitive ATP-32Pi exchange and ATP-dependent quenching of acridine-dye fluorescence. The activities of mutant and wild-type proteoliposomes exhibit the same pattern of sensitivity to dicyclohexylcarbodiimide as the corresponding membranes.  相似文献   

9.
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.  相似文献   

10.
In the previous study, we have found that G65C and I125T double mutant of alpha chaperonin homo-oligomer from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, lacks ATP-dependent protein refolding activity despite showing ATPase activity and the ability to bind the denatured proteins. In this study, we have characterized several mutant Thermococcus chaperonin homo-oligomers with the amino acid substitutions of Gly-65 or Ile-125. The results showed that amino acid residue at 65th position should be a small amino acid such as glycine or alanine for the ATP-dependent refolding activity. The alpha chaperonin homo-oligomers with amino acid substitution of Gly-65 by amino acids whose side chains are larger than the methyl group did not have ATP-dependent protein refolding activity, but exhibited an increase of the binding affinity for unfolded proteins in the presence of ATP or AMP-PNP. (c)2001 Elsevier Science.  相似文献   

11.
When phosphorylated, the inhibitory subunit of troponin (TnI) causes a loss in calcium sensitivity and a decrease in actomyosin ATPase. To examine this process, we bacterially expressed wild type TnI and TnI mutants in which serine 22 and 23, a putative protein kinase A (PKA) site, and threonine 143, a putative protein kinase C (PKC) site, were replaced by alanine S22A/23A and T143A. PKA dependent phosphorylation was ~90% reduced in the S22A/23A mutant and unaffected in T143A. PKC dependent phosphorylation was markedly reduced in T143A relative both to a wild type construct and to S22A/23A, although some residual phosphorylation (likely at sites other than T143) was seen. The calcium sensitivity (i.e. inhibition of actomyosin ATPase in the presence of EGTA) and regulation of the reconstituted actomyosin system was preserved in the absence of phosphorylation using wild type TnI or either mutant. Calcium sensitivity was decreased by both PKA and PKC with the wild type TnI but was unaffected by PKA when the S22A/23A mutant was employed and by PKC when the T143A mutant was reconstituted. The calcium dependency of the ATPase curve was substantially right shifted when PKC phosphorylated wild type TnI was employed for regulation, and this was markedly attenuated when T143 A was reassociated (although a slight rightward shift and a reduction in maximal ATPase activity was still seen). These data confirm that phosphorylation of TnI by regulatory kinases plays a major role in the regulation of myofibrillar ATPase. The N-terminal serines (22 and 23) appear to be uniquely important for the PKA response whereas threonine 143 is involved in the PKC response although other residues may also have functional significance.  相似文献   

12.
ClpX mediates ATP-dependent denaturation of specific target proteins and disassembly of protein complexes. Like other AAA + family members, ClpX contains an alphabeta ATPase domain and an alpha-helical C-terminal domain. ClpX proteins with mutations in the C-terminal domain were constructed and screened for disassembly activity in vivo. Seven mutant enzymes with defective phenotypes were purified and characterized. Three of these proteins (L381K, D382K and Y385A) had low activity in disassembly or unfolding assays in vitro. In contrast to wild-type ClpX, substrate binding to these mutants inhibited ATP hydrolysis instead of increasing it. These mutants appear to be defective in a reaction step that engages bound substrate proteins and is required both for enhancement of ATP hydrolysis and for unfolding/disassembly. Some of these side chains form part of the interface between the C-terminal domain of one ClpX subunit and the ATPase domain of an adjacent subunit in the hexamer and appear to be required for communication between adjacent nucleotide binding sites.  相似文献   

13.
An adenosine triphosphatase (ATPase) mutant of Bacillus megaterium was isolated and characterized. This mutant (designated A37) was unable to grow on nonfermentable carbon sources and possessed less than 5% of the wild-type ATPase activity. Oxygen uptake by the mutant was comparable to that in the wild type. Sporulation in the wild type occurred in both glucose- and nitrogen-limiting media; however, A37 sporulated only in the nitrogen-limiting medium. The inability of A37 to sporulate in glucose-limiting medium seemed to be due to insufficient adenosine 5'-triphosphate (ATP) levels during the sporulation stages. Fructose, which can generate ATP via substrate-level phosphorylation, is equally efficient in stimulating ATP synthesis in the wild type and A37. Malate-stimulated ATP synthesis in the wild type was shown to have many characteristics associated with oxidative phosphorylation and was absent in the mutant. These data suggest that the ATPase deficiency results in the loss of oxidative phosphorylation.  相似文献   

14.
Hybrid membrane particles from two mutants of Escherichia coli K12, Bv4 and KI1, defective in oxidative phosphorylation, have been prepared, in which ATP-driven membrane energization is restored.

A soluble factor of mutant KI1 was found to have properties similar to parental crude coupling factor, ATPase (EC 3.6.1.3). Membrane particles of this mutant could not be reconstituted by parental coupling factor. Either parental coupling factor, or the soluble factor of mutant KI1 could reconstitute both respiration-driven and ATP-driven energization to membrane particles of mutant BV4 or to parental particles depleted of ATPase. Mutant BV4 was found to be devoid of coupling factor activity, while retaining the ability to hydrolyze ATP. Both mutants possess an ATPase with an altered binding to the membrane.

Mutant KI1 is impaired in respiration-driven amino acid transport, in contrast to mutant BV4.

The three major subunits of parental Escherichia coli ATPase have been isolated and antibodies have been prepared against these subunits. Antibodies against the largestsubunit ( component) or against the intact catalytic subunits ( + β components) inhibit both ATP-Pi exchange in the parent organism as well as ATP hydrolytic activity in parent and mutants. Antibodies against the two other subunits (β or γ components) also inhibit these two reactions, but were found to be less effective. Mutant NI44, which lacks ATPase activity, shows no precipitin lines with anti-, anti-β, anti-γ, or anti-( + β) preparations. In contrast, mutants BV4 and KI1, exhibit cross-reactivity with all of the antisera.  相似文献   


15.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is the key functional element in the DNA-PK complex that drives nonhomologous end joining (NHEJ), the predominant DNA double-strand break (DSB) repair mechanism operating to rejoin such breaks in mammalian cells after exposure to ionizing radiation. It has been reported that DNA-PKcs phosphorylation and kinase activity are critical determinants of radiosensitivity, based on responses reported after irradiation of asynchronously dividing populations of various mutant cell lines. In the present study, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G(1) cells to (137)Cs γ rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites within the T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusters was found to be critical for induction of radiosensitivity.  相似文献   

16.
FtsH protease, the product of the essential ftsH gene, is a membrane-bound ATP-dependent metalloprotease of Escherichia coli that has been shown to be involved in the rapid turnover of key proteins, secretion of proteins into and through the membrane, and mRNA decay. The pleiotropic effects of ftsH mutants have led to the suggestion that FtsH possesses an ATP-dependent chaperone function that is independent of its protease function. When considering FtsH as a target for novel antibacterials, it is necessary to determine which of these functions is critical for the growth and survival of bacteria. To address this, we constructed the FtsH mutants E418Q, which retains significant ATPaseactivity but lacks protease activity, and K201N, which lacks both protease and ATPase activities. These mutants were introduced into an E. coli ftsH knockout strain which has wild-type FtsH supplied from a plasmid under control of the inducible araBAD promoter. Since neither mutant would complement the ftsH defect produced in the absence of arabinose, we conclude that the protease function of FtsH is required for bacterial growth.  相似文献   

17.
The Escherichia coli cold shock protein CsdA is a member of the DEAD box family of ATP-dependent RNA helicases, which share a core of nine conserved motifs. The DEAD (Asp-Glu-Ala-Asp) motif for which this family is named has been demonstrated to be essential for ATP hydrolysis. We show here that CsdA exhibits in vitro ATPase and helicase activities in the presence of short RNA duplexes with either 3' or 5' extensions at 15 degrees C. In contrast to wild-type CsdA, a DQAD variant of CsdA (Glu-157-->Gln) had no detectible helicase or ATPase activity at 15 degrees C in vitro. A plasmid encoding the DQAD variant was also unable to suppress the impaired growth of the csdA null mutant at 15 degrees C. Plasmid-encoded CsdADelta444, which lacks most of the carboxy-terminal extension, enhanced the growth of a csdA null mutant at 25 degrees C but not at 15 degrees C; this truncated protein also has limited in vitro activity at 15 degrees C. These results support the physiological function of CsdA as a DEAD box ATP-dependent RNA helicase at low temperature.  相似文献   

18.
In the Saccharomyces cerevisiae Msh2p-Msh6p complex, mutations that were predicted to disrupt ATP binding, ATP hydrolysis, or both activities in each subunit were created. Mutations in either subunit resulted in a mismatch repair defect, and overexpression of either mutant subunit in a wild-type strain resulted in a dominant negative phenotype. Msh2p-Msh6p complexes bearing one or both mutant subunits were analyzed for binding to DNA containing base pair mismatches. None of the mutant complexes displayed a significant defect in mismatch binding; however, unlike wild-type protein, all mutant combinations continued to display mismatch binding specificity in the presence of ATP and did not display ATP-dependent conformational changes as measured by limited trypsin protease digestion. Both wild-type complex and complexes defective in the Msh2p ATPase displayed ATPase activities that were modulated by mismatch and homoduplex DNA substrates. Complexes defective in the Msh6p ATPase, however, displayed weak ATPase activities that were unaffected by the presence of DNA substrate. The results from these studies suggest that the Msh2p and Msh6p subunits of the Msh2p-Msh6p complex play important and coordinated roles in postmismatch recognition steps that involve ATP hydrolysis. Furthermore, our data support a model whereby Msh6p uses its ATP binding or hydrolysis activity to coordinate mismatch binding with additional mismatch repair components.  相似文献   

19.
The yeast nuclear mutant, pet 936, has previously been shown to be defective in the assembly of a functional mitochondrial ATPase (Todd, R. D., McAda, P. C., and Douglas, M. G. (1979) J. Biol. Chem. 254, 11134-11141). In the present report, trypsin degradation and subunit-specific antibody binding have been used to localize subunits 1, 2, and 3 external to or associated with the outer aspect of the inner mitochondrial membrane in the mutant strain. A similar population of unassembled subunits was found in the parental strain as well. Isotope dilution experiments are compatible with those unassembled subunits being normal intermediates in the assembly pathway of the ATPase complex which are blocked from transport across the inner mitochondrial membrane in the mutant, pet 936.  相似文献   

20.
The function of the epsilon subunit of the Escherichia coli proton-translocating ATPase has been examined by using a mutant defective in the uncC gene. Strains with a defective uncC gene show a reduction in both growth yield and growth rate that is more severe than for other unc mutants; this deleterious effect is shown to be a result of the ATPase activity of the F1 complex which is missing the epsilon subunit. In addition, the epsilon-deficient F1 is bound less tightly to the membrane. These data suggest that, in vivo, the epsilon subunit is capable of inhibiting the ATPase activity of F1 and also functions in the binding of F1 to F0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号