首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The TOL (pWW0) catabolic plasmid   总被引:5,自引:0,他引:5  
  相似文献   

2.
The TOL (pWW0) catabolic plasmid.   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

3.
TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes responsible for the degradation of toluene. The structural genes for these catobolic enzymes are clustered into two operons—namely, the xylCMAB and xylXYZLTEGFJQKIH operons. We examined the codon usage patterns of these catabolic genes by measuring the codon-usage distances between pairs of these catabolic genes. The codon-usage distance, d, between gene 1 and gene 2 was defined as d = [(p j q j )2]1/2, where p j > and q j are the frequencies of the j-th codon in gene 1 and 2, respectively, j being any one of the 64 possible codons. We found that the genes in the same operon exhibit similar codon-usage patterns while genes in the different operons exhibit different codon bias. This observation suggests that genes in the same operon have coevolved, and that the ancestors of the xylCMAB and xylXYZLTEGFJQKIH operons evolved in different organisms. Correspondence to: S. Harayama  相似文献   

4.
5.
pWW53 is a 110 kbp catabolic plasmid which encodes the complete pathway for the utilization of toluene and the xylenes. The upper pathway operon xylCAB is located between two homologous but distinct meta pathway operons, xylDLEGF(I,J,K)H, which are in direct repeat. These have each been cloned on large HindIII restriction fragments HA (17.5 kbp) and HB (15.6 kbp), the restriction sites of which have been mapped. During growth of MT53 on benzoate, mutants which have lost the ability to grow on hydrocarbons such as m-xylene (Mxy-) but which retain the ability to grow on their carboxylic acid metabolites such as m-toluate (Mtol+) take over the culture before ultimately being displaced by plasmid-free strains which are Mxy- Mtol-. The plasmids in the Mxy- Mtol+ mutants are formed by a large deletion between homologous regions of the two duplicate meta pathway operons. This causes the loss of the intervening xylCAB operon and the formation of a hybrid xylDLEGF(I, J, K)H operon, starting with the genes originally on HA and terminating with the genes originally on HB.  相似文献   

6.
pWW53-4 is a cointegrate between RP4 and the catabolic plasmid pWW53 from Pseudomonas putida MT53, which contains 36 kbp of pWW53 DNA inserted close to the oriV gene of RP4; it encodes the ability to grow on toluene and the xylenes, characteristic of pWW53, as well as resistance to tetracycline, kanamycin and carbenicillin, characteristic of RP4. A physical map of the 36 kbp insert of pWW53 DNA for 11 restriction enzymes is presented, showing that the relative positions of the two xyl operons are different from those on the archetypal TOL plasmid pWW0. The location of the genes for 4-oxalocrotonate decarboxylase (xylI) and 4-oxalocrotonate tautomerase (xylH) were shown by subcloning and enzyme assay to lie at the distal end of the meta pathway operon. Although 2-oxopent-4-enoate hydratase (xylJ) and 4-hydroxy-2-oxovalerate aldolase (xylK) could be detected on a large cloned HindIII fragment, they could not be accurately located on smaller subcloned DNA, but the only credible position for them is between xylF and xylI. The gene order in the meta pathway operon is therefore xylDLEGF(J,K)IH. The regulatory genes xylS and xylR were located close to and downstream of the meta pathway operon, and the restriction map of the DNA in this region, as has previously been shown for the two operons carrying the structural genes, shows similarities with the corresponding region on pWW0. Evidence is also presented for the existence of two promoters, termed P3 and P4, internal to the meta pathway operon which support low constitutive expression of the structural genes downstream in Pseudomonas hosts but not in E. coli.  相似文献   

7.
The regulated meta pathway operon for the catabolism of salicylate on the naphthalene plasmid pWW60-22 was cloned into the broad-host-range vector pKT230 on a 17.5 kbp BamHI fragment. The recombinant plasmid conferred the ability to grow on salicylate when mobilized into plasmid-free Pseudomonas putida PaW130. A detailed restriction map of the insert was derived and the locations of some of the genes were determined by subcloning and assaying for their gene products in Escherichia coli and P. putida hosts. The existence of a regulatory gene was demonstrated by the induction of enzyme activities in the presence of salicylate. DNA-DNA hybridization indicated a high degree of structural homology between the pWW60-22 operon and the analogous meta pathway operon on TOL plasmid pWW53-4. The data are consistent with the structural genes being arranged in an identical linear array and suggest an evolutionary link between the two catabolic systems.  相似文献   

8.
The entire operon coding for the enzymes responsible for conversion of toluenes to benzoates has been cloned from TOL plasmid pWW53 and the position of the genes accurately located. The coding region was 7.4 kilobase pairs (kbp) long, and the gene order was operator-promoter region (OP1)-a small open reading frame-xylC (1.6 kbp)-xylA (2.9 kbp)-xylB (1.8 kbp). Within the coding region there was considerable homology with the isofunctional region of the archetypal TOL plasmid pWW0. A central region of 2.9 kbp complemented an xylA (for xylene oxygenase) mutant of Pseudomonas putida mt-2 and was also capable of conferring the ability to convert indole to indigo on strains of Escherichia coli and P. putida. This reaction has been reported previously only for dioxygenases involved in aromatic catabolism but not for monooxygenases. It is proposed that the region encodes xylene oxygenase activity capable of direct monohydroxylation of indole to 3-hydroxyindole (oxindole), which then spontaneously dimerizes to form indigo.  相似文献   

9.
WR211 is a transconjugant resulting from transfer of the 117-kilobase (kb) TOL degradative plasmid pWW0 into Pseudomonas sp. strain B13. The plasmid of this strain, pWW01211, is 78 kb long, having suffered a deletion of 39 kb. We show that WR211 contains the 39 kb that is missing from its plasmid, together with at least an additional 17 kb of pWW0 DNA integrated in another part of the genome, probably the chromosome. The ability of WR211 to grow on the TOL-specific substrate m-toluate is the result of expression of the TOL genes in this alternative location, whereas its inability to grow on m-xylene is caused by insertional mutagenesis by 3 kb of DNA of unknown origin in the xylR gene of this DNA. The resident plasmid pWW01211 plays no part in the degradative phenotype of WR211 since it can be expelled by mating in incompatible IncP9 resistance plasmid R2 or pMG18 without loss of the phenotype. This alternatively located DNA can be rescued back into the R2 and pMG18 plasmids as R2::TOL and pMG18::TOL recombinants by mating out into plasmid-free recipients and selecting for Mtol+ transconjugants. In all cases examined, these plasmids contained the entire R plasmid into which is inserted 59 kb of DNA, made up of 56 kb of pWW0 DNA and the 3-kb xylR insertion. Selection for faster growth on benzoate can lead to precise excision of the 39 kb from the TOL region of an R2::TOL recombinant, leaving a residual and apparently cryptic 17-kb segment of pWW0 DNA in the R plasmid.  相似文献   

10.
11.
The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.  相似文献   

12.
13.
The Pseudomonas putida TOL plasmid pWW0 is able to mediate chromosomal mobilization in the canonical unidirectional way, i.e., from donor to recipient cells, and bidirectionally, i.e., donor-->recipient-->donor (retrotransfer). Transconjugants are recipient cells that have received DNA from donor cells, whereas retrotransconjugants are donor bacteria that have received DNA from a recipient. The TOL plasmid pWW0 is able to directly mobilize and retromobilize a kanamycin resistance marker integrated into the chromosome of other P. putida strains, a process that appears to involve a single conjugational event. The rate of retrotransfer (as well as of direct transfer) of the chromosomal marker is influenced by the location of the kanamycin marker on the chromosome and ranges from 10(-3) to less than 10(-8) retrotransconjugants per donor (transconjugants per recipient). The mobilized DNA is incorporated into the chromosome of the retrotransconjugants (transconjugants) in a process that seems to occur through recombination of highly homologous flanking regions. No interspecific mobilization of the chromosomal marker in matings involving P. putida and the closely related Pseudomonas fluorescens, which belongs to rRNA group I, was observed.  相似文献   

14.
Lee JY  Park HS  Kim HS 《Journal of bacteriology》1999,181(9):2953-2957
We identified and characterized a methyl transfer activity of the toluate cis-dihydrodiol (4-methyl-3,5-cyclohexadiene-cis-1, 2-diol-1-carboxylic acid) dehydrogenase of the TOL plasmid pWW0 towards toluene cis-dihydrodiol (3-methyl-4,5-cyclohexadiene-cis-1, 2-diol). When the purified enzyme from the recombinant Escherichia coli containing the xylL gene was incubated with toluene cis-dihydrodiol in the presence of NAD+, the end products differed depending on the presence of adenosylcobalamin (coenzyme B12). The enzyme yielded catechol in the presence of adenosylcobalamin, while it gave 3-methylcatechol in the absence of the cofactor. Adenosylcobalamin was transformed to methylcobalamin as a result of the enzyme reaction, which indicates that the methyl group of the substrate was transferred to adenosylcobalamin. Other derivatives of the cobalamin such as aquo (hydroxy)- and cyanocobalamin did not mediate the methyl transfer reaction. The dehydrogenation and methyl transfer reactions were assumed to occur concomitantly, and the methyl transfer reaction seemed to depend on the dehydrogenation. To our knowledge, the enzyme is the first dehydrogenase that shows a methyl transfer activity as well.  相似文献   

15.
Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida   总被引:3,自引:0,他引:3  
The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids.  相似文献   

16.
WR211 and WR216 are derivatives of halobenzoate-degrading Pseudomonas sp. strain B13 into which the 117-kilobase TOL degradative plasmid pWW0 has been transferred from Pseudomonas putida mt-2. WR211 has lost the ability to grow on the TOL-specific substrate m-xylene but retains the ability to grow on its metabolite, m-toluate. An analysis of the induction of enzymes was consistent with WR211 carrying a nonfunctional regulatory gene, xy1R, WR216 is a spontaneous derivative of WR211 which grows on one of the TOL substrates and yet expresses the nonspecific toluate oxidase, which enables it to grow on the novel substrate 4-chlorobenzoate. In addition to the xy1R lesion inherited from WR211, WR216 appears to carry a mutation in the structural gene for catechol 2,3-oxygenase, xy1E. The plasmids in both strains were analyzed by restriction endonuclease digestion. pWW0-1211 in WR211 has a large deletion (39 kilobases) compared with pWW0 and appears to be identical to a previously described plasmid (pWW0-8) which encodes none of the TOL degradative functions. pWW0-1216 in WR216 has undergone a major structural reorganization relative to its parent, pWW0-1211. This plasmid has a smaller deletion (19 kilobases), which is staggered relative to the deletion in pWW0-1211, and in addition it has two 3-kilobase insertions of unknown origin, one of which appears to cause the xylE mutation.  相似文献   

17.
During growth on benzoate-minimal medium Pseudomonas putida mt-2 (PaW1) segregates derivative ('cured') strains which have lost the ability to use the pathway encoded by its resident catabolic plasmid pWW0. Experiments with two plasmids identical to pWW0 but each with an insert of Tn401, which confers resistance to carbenicillin, suggested that the 'benzoate curing' occurs far more frequently by the specific deletion of the 39 kbp region carrying the catabolic genes than by total plasmid loss. This effect was not pH-dependent, and was not produced during growth on other weak organic acids, such as succinate or propionate, or when benzoate was present in the medium with an alternative, preferentially used carbon source such as succinate. Growth on benzoate did not cause loss from strain PaW174 of the plasmid pWW0174, a derivative of pWW0 which has deleted the 39 kbp region but carries Tn401. Similarly the naphthalene-catabolic plasmid pWW60-1, of the same incompatibility group as pWW0, was not lost from PaW701 during growth on benzoate. Competition between wild-type PaW1 and PaW174, which has the 'cured' phenotype, showed that the latter has a distinct growth advantage on benzoate over the wild-type even when initially present as only 1% of the population: when PaW174 was seeded at lower cell ratios, spontaneously 'cured' derivatives of PaW1 took over the culture after 60-80 generations, indicating that they are present in PaW1 cultures at frequencies between 10(-2) and 10(-3). We conclude that the progressive takeover of populations of PaW1 only occurs when benzoate is present as the sole growth source and that neither benzoate, nor other weak acids, affect plasmid segregation or deletion events: a sufficient explanation is that the 'cured' segregants grow faster than the wild-type using the chromosomally determined beta-ketoadipate pathway.  相似文献   

18.
Summary The pathway encoded by the TOL catabolic pathway has been reported to be in two regulons. Attempts to isolate fully constitutive mutants of the plasmid encoded catechol meta cleavage pathway (the lower regulon) were unsuccessful. However mutants were obtained with altered inducer specificity of this regulon. This was accompanied by loss or alteration of inducer specificity with both regulons and could cause problems with the use of the TOL plasmid in specific strain construction work.  相似文献   

19.
Pseudomonas putida mt-2, harbouring the TOL plasmid pWW0, was grown in chemostat culture under succinate-, sulphate-, ammonium- or phosphate-limitation at different dilution rates. The fraction of mutant cells lacking the plasmid-encoded enzymes for the degradation of toluene and xylene (TOL- cells), was determined. Genetic analysis revealed that all TOL- cells isolated harboured partially deleted plasmids, lacking the TOL catabolic genes. The growth-rate advantage of the TOL- cells was quantified from the kinetics of their increase as a fraction of the total population. At a dilution rate of 0.1 h-1 no growth-rate advantage of TOL- cells was found when phosphate or ammonium were limiting. Under sulphate-limitation, ingrowth of TOL- cells was evident but did not follow a straightforward pattern. Under succinate-limitation the growth-rate advantage was the highest, particularly at low dilution rates (about 50% at D = 0.05 h-1). In phauxostat culture, at the maximal growth rate, the growth-rate advantage of TOL- cells was less than 1%. The specific activity in TOL+ cells of the plasmid-encoded enzyme catechol 2,3-dioxygenase was relatively high at a low growth rate.  相似文献   

20.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号