首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel continuous spectrophotometric assay to measure the activity of the debranching enzyme and α-amylase has been developed. The assay mixture comprises the debranching enzyme (GlgX from Escherichia coli) or α-amylase (PPA from porcine pancreas), a reducing end-specific α-glucosidase (MalZ), maltodextrin-branched β-cyclodextrin (Glcn-β-CD) as the substrate, and the glucose oxidase/peroxidase system (GOPOD). Due to its high reducing end specificity, the branch chains of the substrates are not hydrolyzed by MalZ. After hydrolysis by GlgX or PPA, the released maltodextrins are immediately hydrolyzed into glucose from the reducing end by MalZ, whose concentration is continuously measured by GOPOD at 510 nm in a thermostat spectrophotometer. The kinetic constants determined for GlgX (Km = 0.66 ± 0.02 mM and kcat = 76.7 ± 1.5 s−1) are within a reasonable range compared with those measured using high-performance anion-exchange chromatography (HPAEC). The assay procedure is convenient and sensitive, and it requires lower concentrations of enzymes and substrate compared with dinitrosalicylic acid (DNS) and HPAEC analysis.  相似文献   

2.
A strain AS-S01a, capable of producing high-titer alkaline α-amylase, was isolated from a soil sample of Assam, India and was taxonomically identified as Bacillus subtilis strain AS-S01a. Optimized α-amylase yield by response surface method (RSM) was obtained as 799.0 U with a specific activity of 201.0 U/mg in a process control bioreactor. A 21.0 kDa alkaline α-amylase purified from this strain showed optimum activity at 55 °C and pH 9.0, and it produced high molecular weight oligosaccharides including small amount of glucose from starch as the end product. The Km and Vmax values for this enzyme towards starch were determined as 1.9 mg/ml and 198.21 μmol/min/mg, respectively. The purified α-amylase retained its activity in presence of oxidant, surfactants, EDTA and various commercial laundry detergents, thus advocating its suitability for various industrial applications.  相似文献   

3.
Bacillus subtilis α-amylase (EC 3.2.1.1) has been immobilized on zirconia-coated alkylamine glass by using the process of glutaraldehyde coupling. The immobilized enzyme preparation exhibited 52% of the initial enzyme activity and a conjugation yield of 28 mg/g support. The Km value of the immobilized α-amylase was decreased by immobilization while Vmax was unaltered. Ea of the enzyme was decreased upon conjugation. The soluble enzyme was optimally active at pH 5.6 while the immobilized enzyme exhibited optimal activity in the pH range 5.4–6.2. The alkylamine-immobilized enzyme has also been characterized through its isoelectric point. The industrial importance of this work is discussed.  相似文献   

4.
Considering the economic and industrial relevance of α-amylases used in food and starch industries, a raw starch digesting α-amylase gene (amyBS-I) from Bacillus subtilis strain AS01a was cloned and expressed in Escherichia coli BL21 cells. The gene also includes its signal peptide sequence (SPS) for facilitating the efficient extracellular expression of recombinant α-amylase (AmyBS-I) in correctly folded (enzymatically active) form. The native AmyBS-I consists of 659 amino acids with a molecular mass and pI of 72,387 Da and 5.8, respectively. The extracellular secretion of AmyBS-I after response surface optimization of culture conditions was found to be 7-fold higher as compared to its production under non-optimized conditions. Purified AmyBS-I demonstrated optimum activity at 70 °C and pH 6.0. It shows Km and Vmax values toward soluble starch as 2.7 mg/ml and 454 U/ml, respectively. Further, it does not require Ca2+ ion for its α-amylase activity/thermo-stability, which is an added advantage for its use in the starch industry. The AmyBS-I also hydrolyzed a wide variety of raw starches and produced maltose and glucose as main hydrolyzed products. The bread dough supplemented with AmyBS-I showed better amelioration of the bread quality as compared to the bread supplemented with commercial α-amylase.  相似文献   

5.
A solventogenic strain of Clostridium sp. BOH3 produces extracellular α-amylase (7.15 U/mg protein) in reinforced clostridial medium supplemented with sugarcane bagasse hydrolysate (1 % w/v) and a small amount of starch (0.1 % w/v), which is essential for the expression of α-amylase. In the presence of α-amylase, BOH3 utilizes starch directly without any pretreatment and produces butanol almost equivalent (~90 %) to the production of butanol from glucose. α-Amylase can be purified from culture supernatant by using one-step weak anion exchange chromatography with a yield of 43 %. In peptide fingerprinting analysis, this enzyme shows homology with α-amylase produced by Clostridium acetobutylicum ATCC824. However, the molecular weight is 54 kDa, which is smaller than α-amylase of ATCC824 (84 kDa). This enzyme has optimum temperature at 45–50 °C and optimum pH at 4.5–5.5. Under this condition, the enzyme activity is 91.32 U/mg protein, and its K m and V max values are 1.71?±?0.02 mg/ml and 96.13?±?0.15 μmol/min/mg protein, respectively. Activity of this α-amylase can be enhanced (>1.5 times) by addition of Ca2+ and Co2+ and its activity can be maintained at an acidic pH (pH 3–5) for about 24 h. These unique characteristics suggest that this enzyme can be used for saccharification of starch for production of biofuel in one pot.  相似文献   

6.
An α-amylase secreted by Pichia burtonii 15-1 isolated from a traditional starter murcha of Nepal, named Pichia burtonii α-amylase (PBA), was studied. The gene was cloned and its nucleotide sequence was determined. PBA was deduced to consist of 494 amino acid residues. It shared certain degrees of amino acid sequence identity with other homologous proteins: 60% with Schwanniomyces occidentalis α-amylase, 58% with Saccharomycopsis sp. α-amylase, and 47% with Taka-amylase A from Aspergillus oryzae. A three-dimensional structural model of PBA generated using the known three-dimensional structure of Taka-amylase A as a template suggested high structural similarity between them. Kinetic analysis revealed that the Km values of PBA were lower than those of Taka-amylase A for the oligosaccharides. Although the kcat values of PBA were lower than those of Taka-amylase A for the oligosaccharide substrates, the kcat/Km values of PBA were higher.  相似文献   

7.
Fitness cost is usually associated with insecticide resistance and may be mitigated by increased energy accumulation and mobilization. Preliminary evidence in the maize weevil (Coleoptera: Curculionidae) suggested possible involvement of amylases in such phenomenon. Therefore, α-amylases were purified from an insecticide-susceptible and two insecticide-resistant strains (one with fitness cost [resistant cost strain], and the other without it [resistant no-cost strain]). The main α-amylase of each strain was purified by glycogen precipitation and ion-exchange chromatography (≥70-fold purification, ≤19% yield). Single α-amylase bands with the same molecular mass (53.7 kDa) were revealed for each insect strain. Higher activity was obtained at 35-40 °C and at pH 5.0-7.0 for all of the strains. The α-amylase from the resistant no-cost strain exhibited higher activity towards starch and lower inhibition by acarbose and wheat amylase inhibitors. Opposite results were observed for the α-amylase from the resistant cost strain. Although the α-amylase from the resistant cost strain exhibited higher affinity to starch (i.e., lower Km), its Vmax-value was the lowest among the strains, particularly the resistant no-cost strain. Such results provide support for the hypothesis that enhanced α-amylase activity may be playing a major role in mitigating fitness costs associated with insecticide resistance.  相似文献   

8.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

9.
The α-amylase of Bacillus amyloliquifaciens TSWK1-1 (GenBank Number, GQ121033) was immobilized by various methods, including ionic binding with DEAE cellulose, covalent coupling with gelatin and entrapment in polyacrylamide and agar. The immobilization of the purified enzyme was most effective with the DEAE cellulose followed by gelatin, agar and polyacrylamide. The K m increased, while V max decreased upon immobilization on various supports. The temperature and pH profiles broadened, while thermostability and pH stability enhanced after immobilization. The immobilized enzyme exhibited greater activity in various non-ionic surfactants, such as Tween-20, Tween-80 and Triton X-100 and ionic surfactant, SDS. Similarly, the enhanced stability of the immobilized α-amylase in various organic solvents was among the attractive features of the study. The reusability of the immobilized enzyme in terms of operational stability was assessed. The DEAE cellulose immobilized α-amylase retained its initial activity even after 20 consequent cycles. The DEAE cellulose immobilized enzyme hydrolyzed starch with 27 % of efficiency. In summary, the immobilization of B. amyloliquifaciens TSWK1-1 α-amylase with DEAE cellulose appeared most suitable for the improved biocatalytic properties and stability.  相似文献   

10.
Porcine pancreatic α-amylase can be fractionated into two components by DEAE-cellulose chromatography and by disc electrophoresis. The basis for fractionation is tentatively ascribed to a charge difference. The two components displayed the same specific activity and their thermal and pH stability, as well as the variation of Vmax and Km with pH, were identical within experimental error. It is concluded that the multiple forms of the amylase are physically distinct, but structurally related, with a common active site.  相似文献   

11.
The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and KM and Vmax values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)8 barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.  相似文献   

12.
In the current work nanoparticles (NPs) of α-amylase were generated in an aqueous solution using high-intensity ultrasound, and were subsequently immobilized on polyethylene (PE) films, or polycarbonate (PC) plates, or on microscope glass slides. The α-amylase NPs coated on the solid surfaces have been characterized by ESEM, TEM, FTIR, XPS and AFM. The substrates immobilized with α-amylase were used for hydrolyzing soluble potato starch to maltose. The amount of enzyme introduced in the substrates, leaching properties, and the catalytic activity of the immobilized enzyme were compared. The catalytic activity of the amylase deposited on the three solid surfaces was compared to that of the same amount of free enzyme at different pHs and temperatures. α-Amylase coated on PE showed the best catalytic activity in all the examined parameters when compared to native amylase, especially at high temperatures. When immobilized on glass, α-amylase showed better activity than the native enzyme over all pH and temperature values studied. However, the immobilization on PC did not improve the enzyme activity at any pH and any temperature compared to the free amylase. The kinetic parameters, Km and Vmax were also calculated. The amylase coated PE showed the most favorable kinetic parameters (Km = 5 g L−1 and Vmax = 5E−07 mol mL−1 min−1). In contrast, the anchored enzyme-PC exhibited unfavorable kinetic parameters (Km = 16 g L−1, Vmax = 4.2E−07 mol mL−1 min−1). The corresponding values for amylase-glass were Km = 7 g L−1, Vmax = 1.8E−07 mol mL−1 min−1, relative to those obtained for the free enzyme (Km = 6.6 g L−1, Vmax = 3.3E−07 mol mL−1 min−1).  相似文献   

13.
Membrane potential, Vm, and K+(86Rb+) fluxes have been measured simultaneously on individual cells of Acetabularia mediterranea. During resting state (resting potential approx. ?170 mV) the K+ influx amounts to 0.24–0.6 pmol · cm?2 · s?1 and the K+ efflux to 0.2–1.5 pmol · cm?2 s?1. According to the K+ concentrations inside and outside the cell (40 : 1) the voltage dependent K+ flux (zero at Vm = EK = ?90 mV) is stimulated approx. 40-fold for Vm more positive than EK.It is calculated that during one action potential (temporary depolarization to Vm more positive than EK) a cell looses the same amount of K+, which leaks in during 10–20 min in the resting state (Vm = ?170 mV). Since action potentials occur spontaneously in Acetabularia, they are therefore suggested to have a significant function for the K+ balance of this alga.  相似文献   

14.
To explore an efficient, safe, and speedy application of pulsed electric field (PEF) technology for enzymatic modification, effects of PEF treatment on the enzymatic activity, property and kinetic parameters of α-amylase were investigated. Conformational transitions were also studied with the aid of circular dichroism (CD) and fluorescence spectra. The maximum enzymatic activity of α-amylase was obtained under 15 kV/cm electric field intensity and 100 mL/min flow velocity PEF treatment, in which the enzymatic activity increased by 22.13 ± 1.14 % compared with control. The activation effect could last for 18 h at 4 °C. PEF treatment could widen the range of optimum temperature for α-amylase, however, it barely exerted any effect on the optimum pH. On the other hand, α-amylase treated by PEF showed an increase of V max, t1/2 and ΔG, whereas a decrease of K m and k were observed. Furthermore, it can be observed from fluorescence and CD spectra that PEF treatment had increased the number of amino acid residues, especially that of tryptophan, on α-amylase surface with enhanced α-helices by 34.76 % and decreased random coil by 12.04 % on α-amylase when compared with that of untreated. These changes in structure had positive effect on enhancing α-amylase activity and property.  相似文献   

15.
The nature of chloride ion as an activator of angiotensin-converting enzyme was studied by a series of kinetic experiments with hog plasma enzyme preparation. The enzyme required the presence of chloride ion for its full catalytic activity, but its requirement of monovalent anion was not absolute. The KA value for the enzymechloride binding was estimated to be about 150 mm in all cases regardless of the peptide substrates employed. In the presence of chloride ion, the activity of the enzyme was increased, but its optimum pH was shifted gradually to the alkaline region up to pH 8.2 depending on the concentration of chloride ion. In addition, in the presence of chloride ion, the apparent Km values were reduced markedly while the Vmax values were not much altered; for example, for the hydrolysis of angiotensin I decapeptide, the Km value decreased by a factor of 50 while only an 18% increase in Vmax was observed when the enzyme was saturated with chloride ion. The result suggests that chloride ion acts as a conformational modifier inducing the affinity of synergistic binding of substrate.  相似文献   

16.
The effects of water-soluble nonstarch polysaccharides (sNSP) on human metabolism are considered to be beneficial because they decrease postprandial glycaemia and insulinaemia following ingestion of starch-rich foods. The mechanisms by which sNSP attenuate the postprandial rise in blood glucose are not well understood but their presence increases the viscosity of gastrointestinal contents, which affects physiological functions, e.g. gastric emptying and peristalsis. Increased viscosity and decreased water activity during hydrothermal treatment of starch could influence α-amylase action.Using guar galactomannan as a representative of sNSP, we found that galactomannan has a direct noncompetitive inhibitory effect on α-amylase with a Ki value of approximately 0.5% (3.3 μM). The inhibition is not time dependent and studies suggest direct binding of the enzyme to galactomannan; the resulting galactomannan–amylase complex being inactive. Processing of starch at low water levels greatly affects the catalytic efficiency of α-amylase. The Km value for starch heat treated in limited water is raised and kcat is lowered relative to starch gelatinised in excess water. Since galactomannan has no effect on the Km of α-amylase, we conclude that the inhibitory action of the polymer is not secondary to a decrease in available water. Neither does it seem to be a consequence of impaired diffusion of enzyme, substrate and products because of an increase in viscosity of the medium.Thus, the effects of sNSP in lowering postprandial glycaemia not only involve modifications of gut physiology, but also include direct inhibition of the first stage in the biochemical degradation of starch.  相似文献   

17.
Corn porous starch: preparation, characterization and adsorption property   总被引:1,自引:0,他引:1  
This study was carried out to develop a new type of modified starch based on α-amylase and glucoamylase. The structural and chemical characteristics of the porous starch were determined by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The potential application of the porous starch as an adsorbent was evaluated using methyl violet as an adsorbed model. The adsorption capacity was optimized by investigating the reaction factors, including the mass ratio of α-amylase to glucoamylase (mα-amylase/mglucoamylase), the mass ratio of total amount of enzymes to starch (menzyme/mSt), the ratio of liquid volume to starch mass (VH2O/mSt), pH value of the reaction solution, enzymatic reaction temperature, and enzymatic reaction time. The hydrolysis ratio of each sample was also determined to investigate the effect of different reaction conditions on the hydrolysis degree. The results suggest that the porous starch has a more excellent adsorption capacity than the native starch, and may be expected to have wide potential applications in many fields.  相似文献   

18.
Purification and properties of esterase from Bacillus stearothermophilus   总被引:3,自引:0,他引:3  
An enzyme, which hydrolyzes p-nitrophenyl and m-carboxyphenyl esters of n-fatty acids, is purified from Bacillus stearothermophilus. The enzyme reaction obeys the Michaelis-Menten theory. The Michaelis constant (Km) decreases with increasing the length of carbon number of the acids, but the maximum velocity (V) is maximum for n-caproate. The enzyme is inhibited by diisopropyl fluorophosphate (DFP),2 and 1 mole of DFP reacts with 1 mole of the enzyme of the molecular weight of 42,000–47,000. The enzyme is considered to be carboxylic ester hydrolase (EC 3.1.1.1). The effects of temperature on Km or V for p-nitrophenyl n-caproate and on the inhibitor constant (Ki) for n-laurate suggest a thermal transition in the conformation of the enzyme protein at 55 °C. The enzyme is strongly inhibited by sulfhydryl reagents such as p-chloromercuribenzoate and 5,5′-dithiobis (2-nitrobenzoic acid) at 65 °C, but less at 30 °C. The relationship between the inhibition of the activity by p-chloromercuribenzoate and temperature may suggest that a thermal transition of the enzyme protein accompanies some structural change around sulfhydryl group.  相似文献   

19.
Microsomes from rat testes were incubated with varying concentrations of 14C labelled testosterone and androstenedione. The production of 7α(-hydroxytestosterone and 7α-hydroxyandrostenedione was followed; Km and Vm values were calculated from Lineweaver-Burk curves.A sustained treatment of rats with HCG resulted in a considerable decrease of the maximal 7α-hydroxylation rate (Vm) whereas the Km value was not changed. Vm of microsomes from normal rats, when incubated with microsomes from HCG-treated animals, was also decreased substantially. It is concluded that HCG-induced depression of 7α-hydroxylation capacity of testicular microsomes is at least in part due to non-competitive inhibition of the enzyme.  相似文献   

20.
Differences in amylase action pattern on amylopectin were demonstrated by the relation between the decrease in potassium iodide-iodine binding of waxy maize starch and the increase in reducing value during hydrolysis, as expressed by the RV80 value (i.e., the reducing value for a potassium iodide-iodine binding value of 80% of that of the starting material). In the initial stages of the hydrolysis, the ratio of the increase in the level of reducing polysaccharides to the increase in the total level of reducing sugars formed during amylolysis of amylopectin can be considered as a measure of the level of inner chain attack (LICA) in the overall hydrolysis of the amylopectin structure and correlated with the respective RV80 value. Bacillus amyloliquefaciens α-amylase and Aspergillus oryzae α-amylase, with the lowest RV80 and the highest LICA values, hydrolysed the inner chains of amylopectin to a greater extent than did porcine pancreatic α-amylase. In the initial stages of hydrolysis, Bacillus stearothermophilus maltogenic amylase, like the Bacillus cereus β-amylase, did not display any significant degree of internal hydrolysis of amylopectin, in line with the high RV80 and very low LICA values for these enzymes. However, at the later stages of hydrolysis, the maltogenic amylase probably exhibited a significant degree of internal hydrolysis of amylopectin, which itself seems to depend on temperature. The temperature dependence of the hydrolysis pattern of this enzyme is relevant for interpretation of its action as antifirming enzyme in bread-making applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号