首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary photoprocesses of etiolated oat and pea phytochromes (Pr forms) are diffusion-modulated by the microscopic viscosity within the chromophore pocket. The chromophore pocket is preferentially accessible to glycerol but not to Ficoll. Glycerol preferentially retarded the rate (rate constant ca. 1-2 X 10(10) s-1) of the initial reaction from the Qy excited state of phytochrome, whereas it increased the long fluorescence lifetime (nanosecond) component that can be attributed to either an emitting intermediate or to modified/conformationally heterogeneous phytochrome populations. The picosecond time-resolved fluorescence spectra of different phytochrome preparations (i.e., full-length vs 6/10-kDa NH2-terminus truncated forms of phytochromes from monocot and dicot plants) revealed no significant differences. The spectra in the picosecond time scale showed no spectral shifts, but at longer time scales of up to approximately 1.90 ns, significant blue spectral shifts were observed. The shifts were more in the truncated than in the full-length pea phytochrome. Comparison of the fluorescence decay data and the picosecond time-resolved fluorescence spectra suggests differences in conformational flexibility/heterogeneity among the preparations of the monocot vs dicot phytochromes and the full-length native vs the amino terminus truncated phytochromes.  相似文献   

2.
3.
D Sommer  P S Song 《Biochemistry》1990,29(7):1943-1948
The relative extent of chromophore exposure of the red-absorbing (Pr) and far-red-absorbing (Pfr) forms of 124-kDa oat phytochrome and the secondary structure of the phytochrome apoprotein have been investigated by using zinc-induced modification of the phytochrome chromophore. The absence of bleaching of Pr in the presence of a 1:1 stoichiometric ratio of zinc ions, in contrast to extensive spectral bleaching of the Pfr form, confirms previous reports of differential exposure of the Pfr chromophore relative to the Pr chromophore [Hahn et al. (1984) Plant Physiol. 74, 755-758]. The emission of orange fluorescence by zinc-chelated Pfr indicates that the Pfr chromophore has been modified from its native extended/semi-extended conformation to a cyclohelical conformation. Circular dichroism (CD) analyses of native phytochrome in 20 mM Tris buffer suggests that the Pr-to-Pfr phototransformation is accompanied by a photoreversible change in the far-UV region consistent with an increase in the alpha-helical folding of the apoprotein. The secondary structure of phytochrome in Tris buffer, as determined by CD, differs slightly from that of phytochrome in phosphate buffer, suggesting that phytochrome is a conformationally flexible molecule. Upon the addition of a 1:1 molar ratio of zinc ions to phytochrome, a dramatic change in the CD of the Pfr form is observed, while the CD spectrum of the Pf form is unaffected. Analysis of the bleached Pfr CD spectrum by the method of Chang et al. (1978) reveals that chelation with zinc ions significantly alters the secondary structure of the phytochrome molecule, specifically by increasing the beta-sheet content primarily at the expense of alpha-helical folding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The procedures of Grimm and Rüdiger for the purification of 120 kDa phytochrome from oat seedlings were modified to isolate native phytochrome from etiolated rice (Oryza sativa L. subsp, japonica var. nongken 58) seedlings. Approximately l kg of 6d old seedlings (the first 2 days at 33℃, the last 4 days at 27 ℃ in darkness) were frozen in liquid nitrogen and then homogenized in a modified Waring blendor with an extraction buffer, at final pH 8.45 (4 ℃). After polyethylenimine precipitation, phytochrome in extract was converted to Pfr by irradiation of the resulting supernatant for 10 min with red light. The step of ammonium sulfate precipitation was followed by resuspending of resultant pellet in buffer B with the ratio of 10 ml per phytochrome unit. The pellet precipitated with ammonium sulfate at 42% saturation from combined phytochrome cont ning fractions after hydroxyapatite chromatography was washed with 10 mmol/l phosphate buffer in 0.8 ml instead of 0.65 ml per phytochrome unit. Then it was washed successively with 200 mmol/l and 100 mmol/1 phosphate buffer (0.85 ml per phytochrome unit). Native phytochrome (120 kDa) in 12% yield was dissolved in 2 mmol/l EHPES buffer (2.2 ml per phytochrome unit, pH 7.8, containing 5 mmol/l EDTA and 14 mmol/l 2-mercaptoethanol) was proved to be pure in SDS- polyacrylamide electrophoresis and showed typical absorption spectrum as that of native oat phytochrome.  相似文献   

5.
The time-resolved chlorophyll fluorescence emission of higher plant chloroplasts monitors the primary processes of photosynthesis and reflects photosynthetic membrane organization. In the present study we compare measurements of the chlorophyll fluorescence decay kinetics of the chlorophyll-b-less chlorina-f2 barley mutant and wild-type barley to investigate the effect of alterations in thylakoid membrane composition on chlorophyll fluorescence. Our analysis characterizes the fluorescence decay of chlorina-f2 barley chloroplasts by three exponential components with lifetimes of approx. 100 ps, 400 ps and 2 ns. The majority of the chlorophyll fluorescence originates in the two faster decay components. Although photo-induced and cation-induced effects on fluorescence yields are evident, the fluorescence lifetimes are independent of the state of the Photosystem-II reaction centers and the degree of grana stacking. Wild-type barley chloroplasts also exhibit three kinetic fluorescence components, but they are distinguished from those of the chlorina-f2 chloroplasts by a slow decay component which displays cation- and photo-induced yield and lifetime changes. A comparison is presented of the kinetic analysis of the chlorina-f2 barley fluorescence to the decay kinetics previously measured for intermittent-light-grown peas (Karukstis, K. and Sauer, K. (1983) Biochim. Biophys. Acta 725, 384–393). We propose that similarities in the fluorescence decay kinetics of both species are a consequence of analogous rearrangements of the thylakoid membrane organization due to the deficiencies present in the light-harvesting chlorophyll ab complex.  相似文献   

6.
《FEBS letters》1986,198(2):268-272
The kinetics of the fluorescence emitted by the ‘special pair’ of bacteriochlorophyll b molecules in reaction centres from Rhodopseudomonas viridis was recorded in the near infrared, with a time resolution of 1 ns. In nonreduced reaction centres two decay components were resolved with lifetimes of <0.5 and 2.5 ns. Upon reduction of the menaquinone electron acceptor three decay components were detected with lifetimes of < 0.5, 2.5 and 15ns.  相似文献   

7.
Binding of 1,8-anilinonaphthalene sulfonate (1,8-ANS) with native human oxyhemoglobin (Hb) in 50 mM potassium phosphate buffer (pH 7.4) was studied by steady state fluorescence spectroscopy and by laser spectrofluorimetry with subnanosecond time resolution. The distribution of fluorescence decay times and parameters of two- and three-exponential deconvolution of the fluorescence kinetics of 1,8-ANS in Hb solution demonstrate that the emission at wavelengths em of 455-600 nm is not single-exponential and has components with mean decay times <0.5, 3.1-5.5, and 12.4-15.1 nsec with the amplitudes depending on the emission wavelength. Analysis of time-resolved fluorescence spectra shows that the shortest-lived component should be assigned to 1,8-ANS molecules in the aqueous medium, whereas the two longer-lived components are assigned to two types of binding sites for 1,8-ANS in the Hb molecule characterized by different polarity and accessibility to water molecules.  相似文献   

8.
Fluorescence lifetimes of 'large (mol. wt. 120,000) and 'small' (mol. wt. 60,000) phytochromes isolated from oat and rye seedlings grown in the dark have been measured at 199 K and 298 K. Phytochrome model compounds have also been studied by phase modulation fluorometrically at 77 K for comparison with lifetime data for phytochrome. It was found that the fluorescence lifetime of 'large' phytochrome was significantly shorter than that of 'small' phytochrome and its chromophore models. The phytochrome chromophore of Pr form has been analyzed by fluorescence polarization, CD, and molecular orbital methods. The fluorescence excitation polarization of 'small' phytochrome and the chromophore model in buffer/glycerol mixture (3 : 1, v/v) at 77 K is very hight (0.4) at the main absorption band and is negative (--0.1) and close to 0 in the near ultraviolet band, respectively. Analyses of the spectroscopic data suggest that the chromophore conformation of Pr and Pfr forms of phytochrome are essentially identical. The induced ellipticity of 'large' rye phytochrome in the blue and near ultraviolet regions was found to be significantly higher than that of 'small' phytochrome, indicating that the binding interaction between the phytochrome chromophore and apoprotein is much tighter in the former than in the latter. In addition, the excitation energy transfer does occur from Trp residue(s) to the chromophore in 'large' phytochrome but not in 'small' Pr. This illustrates one feature of the role played by the large molecular weight apoprotein in the binding site interactions and primary photoprocesses of Pr. Finally, a plausible model for the primary photoprocesses and the mechanism of phytochrome interactions triggered by the Pr leads to Pfr phototransformation have been proposed on the basis of the above results.  相似文献   

9.
Single-photon counting techniques were used to measure the fluorescence decay from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum chromatophores after excitation with a 25-ps, 600-nm laser pulse. Electron transfer was blocked beyond the initial radical-pair state (PF) by chemical reduction of the quinone that serves as the next electron acceptor. Under these conditions, the fluorescence decays with multiphasic kinetics and at least three exponential decay components are required to describe the delayed fluorescence. Weak magnetic fields cause a small increase in the decay time of the longest component. The components of the delayed fluorescence are similar to those found previously with isolated reaction centers. We interpret the multi-exponential decay in terms of two small (0.01-0.02 eV) relaxations in the free energy of PF, as suggested previously for reaction centers. From the initial amplitudes of the delayed fluorescence, it is possible to calculate the standard free-energy difference between the earliest resolved form of PF and the excited singlet state of the antenna complexes in R. rubrum strains S1 and G9. The free-energy gap is found to be about 0.10 eV. It also is possible to calculate the standard free-energy difference between PF and the excited singlet state of the reaction center bacteriochlorophyll dimer (P). Values of 0.17 to 0.19 eV were found in both R. rubrum strains and also in Rps. sphaeroides strain 2.4.1. This free-energy gap agrees well with the standard free-energy difference between PF and P determined previously for reaction centers isolated from Rps. sphaeroides strain R26. The temperature dependence of the delayed fluorescence amplitudes between 180 K and 295 K is qualitatively different in isolated reaction centers and chromatophores. However, the temperature dependence of the calculated standard free-energy difference between P* and PF is similar in reaction centers and chromatophores of Rps. sphaeroides. The different temperature dependence of the fluorescence amplitudes in reaction centers and chromatophores arises because the free-energy difference between P* and the excited antenna is dominated by the entropy change associated with delocalization of the excitation in the antenna. We conclude that the state PF is similar in isolated reaction centers and in the intact photosynthetic membrane. Chromatophores from Rps. sphaeroides strain R-26 exhibit an anomalous fluorescence component that could reflect heterogeneity in their antenna.  相似文献   

10.
选择597 nm作为激发波长,探测范围为600~900 nm的荧光特性,分析了天然反应中心和两种去镁叶绿素置换的紫细菌反应中心的荧光发射光谱.借助细菌叶绿素、细菌去镁叶绿素和植物去镁叶绿素的荧光光谱,对相关组分进行了归类.实验结果表明选择性地置换细菌去镁叶绿素影响了荧光光谱的组成.在天然反应中心、BpheB置换的反应中心和BpheA,B置换的反应中心中可分别解析到4、3和2个荧光发射组分.研究肯定荧光发射组分与去镁叶绿素的结合存在对应关系.实验还分别在686.4、674.1和681.1 nm处测定了不同反应中心内的原初电子供体P的激发态通过荧光衰减的过程,观测到衰减动力学上的差异.说明去镁叶绿素置换影响了细菌反应中心内激发光能传递和原初光化学反应过程.  相似文献   

11.
We have developed a sensitive high-performance liquid chromatographic assay for the determination of the zidovudine metabolite 3′-amino-3′-deoxythimidine (AMT) using fluorescence detection and sensitivity in the picomolar range. Plasma was diluted with 0.05 M sodium phosphate buffer pH 7.2 and subsequently prepared for analysis using solid-phase extraction. AMT was derivatized with 9-fluorenyl methylchloroformate and chromatographed using a reversed-phase system. The mobile phase consisted of acetonitrile-0.01 M potassium phosphate buffer (pH 7) (32:68, v/v). The fluorescence of the column effluent was monitored at 262 nm (excitation) and 306 nm (emission). Good resolution of AMT from endogenous plasma components was obtained. Within- and between-day variability was less than 10%. The limit of quantitation was 0.9 μg/l. The assay was successfully applied to the determination of AMT in human plasma and plasma of mice treated with zidovudine.  相似文献   

12.
Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores was studied at room temperature and under intermittent illuminations.The decay of delayed fluorescence was constituted of two components; a fast component decayed with a half time of about 8 ms, a slow one decayed in parallel with the reduction of photooxidized bacteriochlorophyll (P+) with a half time of 100–200 ms. The biphasic decay of delayed fluorescence indicated that a rapid equilibrium was established between the primary electron acceptor and the secondary acceptor.In the presence of o-phenanthroline, the time course of the decay of delayed fluorescence was identical with that of the reduction of P+ in reaction center-rich subchromatophore particles, although they did not necessarily coincide with each other in “intact” chromatophores.The intensity of the slow component was increased and the decay was accelerated at basic pH values. Reagents that dissipate the proton gradient across the chromatophore membranes such as carbonylcyanide m-chlorophenylhydrazone (CCCP) and nigericin accelerated the decay of the slow component. These effects are probably resulting from changes in internal pH of chromatophore vesicles. Reagents that dissipate the membrane potential such as CCCP and valinomycin decreased the intensity.  相似文献   

13.
The fluorescence of cyclo-(glycyl-L-tryptophyl) in trimethyl phosphate has been studied in a temperature range varying from room temperature to -85 degrees C. At room temperature, the fluorescence decay is the sum of two exponentials, the relative amplitude of which depends on the emission wavelength. This can be explained by the presence of the two following emitting molecular states: on one hand the unfolded state, the fluorescence decay time and the emission spectrum of which are close to these of skatole; on the other hand the folded state which has a shorter decay time and a blue-shifted spectrum. By lowering the temperature, the fluorescence spectrum shifts to the blue, while the skatole spectrum shifts to the red. This behavior corresponds to an increase of the folded conformation concentration in agreement with the NMR results. Furthermore the rate of exchange between the folded and the unfolded conformations decreases. Accordingly the wavelength dependence of the fluorescence decay lessens. There are two possible values of the conformational angle x2 differing by 180 degrees, which correspond to the folded state; due to the indole asymmetry, the interactions between the indole and diketopiperazine rings differ in these conformers. Consequently the fluorescence decay remains biexponential even at -85 degrees C.  相似文献   

14.
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.  相似文献   

15.
Using measurements of the kinetics of chlorophyll a fluorescence emission, we have investigated the development of the photosynthetic membrane during etioplast-to-chloroplast differentiation. The chlorophyll fluorescence decay kinetics of pea chloroplasts from plants grown under intermittent (2 min light-118 min dark) and continuous light regimes were monitored with a single-photon timing system with picosecond resolution. We have associated the changes in the fluorescence yields and decay kinetics with known structural and organizational developmental phenomena in the chloroplast. This correlation provides a more detailed assignment of the origins of the fluorescence decay components than has been previously obtained by studying only mature chloroplasts. In particular, our analysis of the variable kinetics and multiexponential character of the fluorescence emission during thylakoid development focuses on the organization of photosynthetic units and the degree of communication between reaction centers in the same photosystem. Our results further demonstrate that the age of etiolated tissue is critical to plastid development.  相似文献   

16.
17.
Pratt LH 《Plant physiology》1980,66(5):903-907
Undegraded, highly purified [35S]phytochrome was immunoaffinity-purified either from dark control oat (cv. Garry) shoots or from etiolated oat shoots that were previously irradiated first with red and then with far-red light so that, if proper extraction conditions had been utilized, about 60% of the total phytochrome would have been pelletable. When [35S]phytochrome was added to extraction buffer immediately prior to homogenization of etiolated oat shoots, pelletability assays indicated that there was no preferential binding of [35S]phytochrome regardless of (a) whether it was purified from dark control or irradiated shoots, (b) whether it was added as phytochrome-red-absorbing form or phytochrome-far-red-absorbing form, or (c) whether it was added to dark control or red-irradiated shoots. Similarly, binding of [35S]phytochrome to resuspended pellets obtained from crude oat extracts was not specific for the source of [35S]phytochrome, for its form, or for the irradiation treatment given to intact shoots used to prepare the resuspended pellets. No evidence was obtained to support the hypothesis that phytochrome binds with specificity to particulate material in vitro under conditions used to assay for light-enhanced, in vivo-induced phytochrome pelletability.  相似文献   

18.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

19.
Vassiliev S  Lee CI  Brudvig GW  Bruce D 《Biochemistry》2002,41(40):12236-12243
Chlorophyll fluorescence decay kinetics in photosynthesis are dependent on processes of excitation energy transfer, charge separation, and electron transfer in photosystem II (PSII). The interpretation of fluorescence decay kinetics and their accurate simulation by an appropriate kinetic model is highly dependent upon assumptions made concerning the homogeneity and activity of PSII preparations. While relatively simple kinetic models assuming sample heterogeneity have been used to model fluorescence decay in oxygen-evolving PSII core complexes, more complex models have been applied to the electron transport impaired but more highly purified D1-D2-cyt b(559) preparations. To gain more insight into the excited-state dynamics of PSII and to characterize the origins of multicomponent fluorescence decay, we modeled the emission kinetics of purified highly active His-tagged PSII core complexes with structure-based kinetic models. The fluorescence decay kinetics of PSII complexes contained a minimum of three exponential decay components at F(0) and four components at F(m). These kinetics were not described well with the single radical pair energy level model, and the introduction of either static disorder or a dynamic relaxation of the radical pair energy level was required to simulate the fluorescence decay adequately. An unreasonably low yield of charge stabilization and wide distribution of energy levels was required for the static disorder model, and we found the assumption of dynamic relaxation of the primary radical pair to be more suitable. Comparison modeling of the fluorescence decay kinetics from PSII core complexes and D1-D2-cyt b(559) reaction centers indicated that the rates of charge separation and relaxation of the radical pair are likely altered in isolated reaction centers.  相似文献   

20.
Identical time-resolved fluorescence measurements with ~ 3.5-ps resolution were performed for three types of PSI preparations from the green alga, Chlamydomonas reinhardtii: isolated PSI cores, isolated PSI–LHCI complexes and PSI–LHCI complexes in whole living cells. Fluorescence decay in these types of PSI preparations has been previously investigated but never under the same experimental conditions. As a result we present consistent picture of excitation dynamics in algal PSI. Temporal evolution of fluorescence spectra can be generally described by three decay components with similar lifetimes in all samples (6–8 ps, 25–30 ps, 166–314 ps). In the PSI cores, the fluorescence decay is dominated by the two fastest components (~ 90%), which can be assigned to excitation energy trapping in the reaction center by reversible primary charge separation. Excitation dynamics in the PSI–LHCI preparations is more complex because of the energy transfer between the LHCI antenna system and the core. The average trapping time of excitations created in the well coupled LHCI antenna system is about 12–15 ps longer than excitations formed in the PSI core antenna. Excitation dynamics in PSI–LHCI complexes in whole living cells is very similar to that observed in isolated complexes. Our data support the view that chlorophylls responsible for the long-wavelength emission are located mostly in LHCI. We also compared in detail our results with the literature data obtained for plant PSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号