首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the first experimental study of nitrogen fixation by corona discharge on the anoxic primitive Earth. The energy yields of nitric oxide (NO) and nitrous oxide (N2O) were experimentally determined over a wide range of CO2-N2 mixtures simulating the evolution of the Earth's atmosphere during the Hadean and Archean eras (from 4.5 ba to 2.5 ba). NO, the principal form of fixed nitrogen in lightning and coronal discharge in early Earth, is produced ten times less efficiently in the latter type of electrical discharge with an estimated maximum annual production rate of the order of 1010 g yr−1. For N2O the maximum production rate was estimated to be ∼109 g yr−1. These low rates of syntheses indicate that corona discharges as point discharges on the clouds and ground did not play a significant role in the overall pool of reactive nitrogen needed for the emergence and sustainability of life.  相似文献   

3.
4.
Bacterial cells are frequently exposed to dramatic fluctuations in their environment, which cause perturbation in protein homeostasis and lead to protein misfolding. Bacteria have therefore evolved powerful quality control networks consisting of chaperones and proteases that cooperate to monitor the folding states of proteins and to remove misfolded conformers through either refolding or degradation. The levels of the quality control components are adjusted to the folding state of the cellular proteome through the induction of compartment specific stress responses. In addition, the activities of several quality control components are directly controlled by these stresses, allowing for fast activation. Severe stress can, however, overcome the protective function of the proteostasis network leading to the formation of protein aggregates, which are sequestered at the cell poles. Protein aggregates are either solubilized by AAA+ chaperones or eliminated through cell division, allowing for the generation of damage-free daughter cells.  相似文献   

5.
Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes, while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based approaches, such as the codon adaptation index, in the task of discerning the (highly expressed) ribosomal protein genes by their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a substantial part of the genome—between 5% and 33%, depending on genome size—while also exhibiting higher experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen radicals and ammonia and to possible misannotations of asparaginyl–tRNA synthetases. Since the presence of codon optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an “adaptome” by highlighting gene functions with expression levels elevated specifically in thermophilic Bacteria and Archaea.  相似文献   

6.
Oxygen and life in the Precambrian   总被引:1,自引:0,他引:1  
  相似文献   

7.
A specific index of nucleotide sequence redundancy, the specific restriction length of a finite frequency dictionary, was determined for a complete set of genes in some viral genomes and a genome of a bacterium, Bacillus subtilis. The distribution of the gene number over the specific restriction length was shown to be bimodal for viral genomes and unimodal for the Bac. subtilis genome. These results agree with earlier data.  相似文献   

8.
Molecular Biology - Protein synthesis on ribosomes is considered the main process in cell life. Regulation of ribosomal protein gene expression plays an important role in the balanced synthesis of...  相似文献   

9.
10.
11.
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.  相似文献   

12.
Analysis of bacterial genomic sequences revealed an average bacterial gene size of approximately 1 kb. However, genes with a size >10 kb were also noted. This study investigates the prevalence, possible function, and origin of exceptionally large-size genes (ELSGs; >10 kb) in prokaryotes. Forty-two ELSGs (0.03%) were identified after searching more than 170,000 genes in 46 bacterial and 11 archaeal species. These ELSGs were found in diverse species including both archaeal and eubacterial kingdoms. Homology analysis of these ELSGs indicates that, other than encoding nonribosomal peptide synthesis enzymes, many ELSGs likely encode cell surface proteins. The ELSGs have different degrees of codon usage bias, and evidence of gene expression is observed in some cases. Both intragenic domain duplication and gene recombination are major means contributing to gene size expansion in these ELSGs. Direct evidence of gene fusion was identified in only one ELSG. Finally, several ELSGs showed recent horizontal transfer signatures. In summary, ELSGs are commonly present in prokaryotes. Aside from their large size, the evolutionary process of ELSGs is quite heterogeneous.  相似文献   

13.
Secondary Transport of Amino Acids in Prokaryotes   总被引:1,自引:0,他引:1  
Amino acid transport is a ubiquitous phenomenon and serves a variety of functions in prokaryotes, including supply of carbon and nitrogen for catabolic and anabolic processes, pH homeostasis, osmoprotection, virulence, detoxification, signal transduction and generation of electrochemical ion gradients. Many of the participating proteins have eukaryotic relatives and are successfully used as model systems for exploration of transporter structure and function. Distribution, physiological roles, functional properties, and structure-function relationships of prokaryotic α-amino acid transporters are discussed.  相似文献   

14.
The appearance of Bacteria sensu lato, Eukaryota, Metaphyta, Metazoa, etc., along with the oxygenization of the atmosphere, are shown to have occurred much earlier than was previously assumed. Paleontological data clearly indicate that the difference between surface temperature of the Earth in the Archaen and now was no more than 30°C.  相似文献   

15.
The presence of unrepaired lesions in DNA represents a challenge for replication. Most, but not all, DNA lesions block the replicative DNA polymerases. The conceptually simplest procedure to bypass lesions during DNA replication is translesion synthesis (TLS), whereby the replicative polymerase is transiently replaced by a specialized DNA polymerase that synthesizes a short patch of DNA across the site of damage. This process is inherently error prone and is the main source of point mutations. The diversity of existing DNA lesions and the biochemical properties of Escherichia coli DNA polymerases will be presented. Our main goal is to deliver an integrated view of TLS pathways involving the multiple switches between replicative and specialized DNA polymerases and their interaction with key accessory factors. Finally, a brief glance at how other bacteria deal with TLS and mutagenesis is presented.Within the context of this review, we will limit the notion of DNA lesions to chemically altered bases, although the sugar-phosphodiester backbone is also subject to various types of chemical attack leading, for example, to single-strand breaks. Lesions may be spontaneous (e.g., depurinations), induced endogenously (e.g., by reactive oxygen species), induced by radiations (UV light, X rays) or by chemicals. Treatments that induce DNA lesions cause mutations and cancer and are therefore referred to as mutagens or carcinogens. Carcinogens fall into large chemical families of compounds such as aromatic amides, polycyclic hydrocarbons, and nitrosamines. Carcinogens are not necessarily synthetic; for example, some are natural plant metabolites (e.g., Aflatoxin B1, aristolochic acid, etc.). In addition, some drugs used in cancer chemotherapy such as platinum derivatives form covalent DNA adducts and as such are also carcinogens. Drugs from the thiopurine family, such as azathioprine widely used as immunosuppressants in organ transplant patients, form DNA adducts upon interaction with sunlight and promote skin cancer (Zhang et al. 2007).  相似文献   

16.
17.
18.
Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning.  相似文献   

19.
20.
Bacterial lipoproteins, characterized by the N-terminal N-acyl S-diacylglyceryl Cysteine, are key membrane proteins in bacterial homeostasis. It is generally thought that during the modification lipoprotein precursors are translocated via the Sec-machinery in an unfolded state. The recent discovery of twin-arginine translocation (TAT) machinery, meant for exporting folded-proteins, and the presence of TAT-type signal sequences in co-factor-containing (hence already folded) lipoproteins, prompted us to investigate its role and significance in lipoprotein biosynthesis. We systematically analyzed 696 prokaryotic genomes using an algorithm based on DOLOP and TatP rules to predict TAT-pathway-dependent lipoprotein substrates. Occurrence of the deduced TAT-pathway-dependent lipoprotein substrates in relation to genome size, presence or absence of TAT machinery, and extent of its usage for lipoprotein export and habitat types revealed that unlike the host-obligates, the free-living prokaryotes in complex hostile environments (e.g., soil) depend more on TAT-exported lipoproteins. Functional classification of the predicted TAT-dependent lipoproteins revealed enrichment in hydrolases and oxido-reductases, which are fast-folding and co-factor-containing proteins. The role of the TAT pathway in the export of folded-lipoproteins and in niche-specific adaptation for survival has important implications not only in lipoprotein biosynthesis, but also for protein and metabolic engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号