首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The riverine supply of the globally limiting nutrient, phosphorus, to the ocean accounts for only a few percent of nutrient supply to photosynthetic organisms in surface waters. Recycling of marine organic matter by heterotrophic organisms provides almost all of the phosphorus that drives net primary production in the modern ocean. In the low‐oxygen environments of the Proterozoic, the lack of free oxygen would have limited rates of oxic respiration, slowing the recycling of nutrients and thus limiting global rates of photosynthesis. A series of steady‐state mass balance calculations suggest that the rate of net primary production in the ocean was no more than 10% of its modern value during the Proterozoic eon, and possibly less than 1%. The supply of nutrients in such a world would be dominated by river input, rather than recycling within the water column, leading to a small marine biosphere found primarily within estuarine environments.  相似文献   

2.
Geological records of atmospheric oxygen suggest that pO2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there are three stable states for atmospheric oxygen, roughly corresponding to levels observed in the geological record. These stable states arise from a series of specific positive and negative feedbacks, requiring a large geochemical perturbation to the redox state to transition from one to another. In particular, we show that a very low oxygen level in the Archean (i.e., 10?7 PAL) is consistent with the presence of oxygenic photosynthesis and a robust organic carbon cycle. We show that the Snowball Earth glaciations, which immediately precede both transitions, provide an appropriate transient increase in atmospheric oxygen to drive the atmosphere either from its Archean state to its Proterozoic state, or from its Proterozoic state to its Phanerozoic state. This hypothesis provides a mechanistic explanation for the apparent synchronicity of the Proterozoic Snowball Earth events with both the Great Oxidation Event, and the Neoproterozoic oxidation.  相似文献   

3.
The rise of eukaryotes to ecological prominence represents one of the most dramatic shifts in the history of Earth's biosphere. However, there is an enigmatic temporal lag between the emergence of eukaryotic organisms in the fossil record and their much later ecological expansion. In parallel, there is evidence for a secular increase in the availability of the key macronutrient phosphorus (P) in Earth's oceans. Here, we use an Earth system model equipped with a size‐structured marine ecosystem to explore relationships between plankton size, trophic complexity, and the availability of marine nutrients. We find a strong dependence of planktonic ecosystem structure on ocean nutrient abundance, with a larger ocean nutrient inventory leading to greater overall biomass, broader size spectra, and increasing abundance of large Zooplankton. If existing estimates of Proterozoic marine nutrient levels are correct, our results suggest that increases in the ecological impact of eukaryotic algae and trophic complexity in eukaryotic ecosystems were directly linked to restructuring of the global P cycle associated with the protracted rise of surface oxygen levels. Our results thus suggest an indirect but potentially important mechanism by which ocean oxygenation may have acted to shape marine ecological function during late Proterozoic time.  相似文献   

4.
Large amounts of well preserved microfossils have been reported from the cherts of the Upper Proterozoic of the Bohemian Massif (Middle Europe). They resemble those described by Cayeux (1894) from the Upper Proterozoic (Brioverian) of Bretagne (France). It is shown, unlike the views of Cayeux and his followers (Deflandre, 1955, and Graindor 1957), that the observed structures did not belong to individuals but to colonies of filamentous prokaryotic organisms, most probably blue-green algae (Cyanophyta). These produced specific crystal-like mineral aggregation round each filament. Scanning microscope examination has revealed that the individual facets of these mineral crystals were perforated by the openings through which the thread-like bodies of these primitive organisms protruded. It is shown that these microorganisms were attached to the cells of other, bigger microorganisms and enveloped them. Some of these substrate organisms might have been eukaryotic algae. The thecae gradually accumulated around the cells of these carrier organisms and after death the colonies disintegrated to constitute the main component of the sediment. The microfossils described are just a major component of a complicated fossil assemblage comprising coccoid and filamentous blue-green algae and bacteria. There are indications that several eukaryotic species might also have been present.  相似文献   

5.
Responses of freshwater organisms to environmental oxygen tensions (PO2) have focused on adult (i.e. late developmental) stages, yet responses of embryonic stages to changes in environmental PO2 must also have implications for organismal biology. Here we assess how the rotational behaviour of the freshwater snail Lymnaea stagnalis changes during development in response to conditions of hypoxia and hyperoxia. As rotation rate is linked to gas mixing in the fluid surrounding the embryo, we predicted that it would increase under hypoxic conditions but decrease under hyperoxia. Contrary to predictions, early, veliger stage embryos showed no change in their rotation rate under hyperoxia, and later, hippo stage embryos showed only a marginally significant increase in rotation under these conditions. Predictions for hypoxia were broadly supported, however, with both veliger and hippo stages showing a marked hypoxia-related increase in their rotation rates. There were also subtle differences between developmental stages, with hippos responding at PO2s (50% air saturation) greater than those required to elicit a similar response in veligers (20% air saturation). Differences between developmental stages also occurred on return to normoxic conditions following hypoxia: rotation in veligers returned to pre-exposure levels, whereas there was a virtual cessation in embryos at the hippo stage, likely the result of overstimulation of oxygen sensors driving ciliary movement in later, more developed embryos. Together, these findings suggest that the spinning activity of L. stagnalis embryos varies depending on environmental PO2s and developmental stage, increasing during hypoxia to mix capsular contents and maintain a diffusive gradient for oxygen entry into the capsule from the external environment (“stir-bar” theory of embryonic rotational behaviour).  相似文献   

6.
Environmental oxygen availability may play an important role in the evolution of polar marine organisms, as suggested by the physiological and biochemical strategies adopted by these organisms to acquire, deliver and scavenge oxygen. Stress conditions such as extreme temperatures increase the production of reactive oxygen species (ROS) in cells. Thus, in order to prevent cellular damage, adjustments in antioxidant defences are needed to maintain the steady-state concentration of ROS. Cold-adapted bacteria are generally acknowledged to achieve their physiological and ecological success in cold environments through structural and functional properties developed in their genomes. A short overview on the molecular adaptations of polar bacteria and in particular on the biological function of oxygen-binding proteins in Pseudoalteromonas haloplanktis TAC125, selected as a model, will be provided together with the role of oxygen and oxidative/nitrosative stress in regulating adaptive responses at cellular and molecular levels.  相似文献   

7.
Plaster impressions and sand casts of extant medusae, a chondrophoran, and a pennatulid share basic structural characteristics with fossils in the Upper Proterozoic Ediacara assemblage. Impressions of extant medusae and Proterozoic circular impressions show general similarities in arrangement and position of radial and concentric structures and a central raised boss. However, annular rings and radial grooves are more numerous in the Proterozoic fossils and strongly folded or deformed fossils are rare as compared with impressions of modem medusae. Recent pennatulids yield impressions that are more deformed and irregular than the Proterozoic genus Charniodiscus. The greater frequency of deformation of most simulated fossil medusoids relative to Precambrian circular impressions implies that Proterozoic medu-soids were substantially stiffer than many modern taxa of comparable sizes. Many fossils with abundant circular rings have no constructional counterparts among the extant forms studied here and their medusoid affinities should remain in doubt. The structural simplicity of impressions of Ediacara organisms and extant cnidarians suggests that their mutual similarities may be due to convergence. However, there is no compelling morphological reason to reject the claim that some Proterozoic fossils may share affinities with living cnidarians. □ Taphonomy. Ediacara biota, cnidarians, phylogenetic relationships.  相似文献   

8.
In poikilothermic animals body temperature varies with environmental temperature, and this results in a change in metabolic activity (Q10 of enzymatic reactions typically is around 2-3). Temperature changes also modify gas transport in body fluids. While the diffusion coefficient increases with increasing temperatures, physical solubility and also hemoglobin oxygen affinity decrease. Therefore, an increase in temperature typically requires adjustments in cardiac activity because ventilatory and convectional transport of respiratory gases usually are tightly coupled in adults in order to meet the oxygen demand of body tissues. Hypoxic conditions also provoke adaptations in the central circulatory system, like the hypoxic bradycardia, which has been described for many adult lower vertebrates, combined with an increase in stroke volume and peripheral resistance. In embryos and larvae the situation is much more complicated, because nervous control of the heart is established only late during development, and because the site of gas exchange changes from mainly cutaneous gas exchange during early development to mainly pulmonary or branchial gas exchange in late stages. In addition, recent studies in amphibian and fish embryos and larvae reveal, that at least in very early stages convectional gas transport of the hemoglobin is not essential, which means that in these early stages ventilatory and convectional gas transport are not yet coupled. Accordingly, in early stages of fish and amphibians the central cardiac system often does not respond to hypoxia, although in some species behavioral adaptations indicate that oxygen sensors are functional. If a depression of cardiac activity is observed, it most likely is a direct effect of oxygen deficiency on the cardiac myocytes. Regulated cardiovascular responses to hypoxia appear only in late stages and are similar to those found in adult species.  相似文献   

9.
C. Rabette  N. Lair 《Hydrobiologia》1998,390(1-3):61-72
The horizontal distributions of the benthic stages of Chaoborus flavicans and Cyclops vicinus were studied in a eutrophic stratified lake in the Massif-Central (France) over one year, at 5 stations from the shore to the centre of the lake. Their distribution was investigated in relation to temperature, dissolved oxygen, sediment grain-size and other benthic organisms. The dominant taxa of the benthic fauna of Lake Aydat were dipterans, crustaceans and oligochaetes and their distributions were independent of the grain size. In contrast to chironomids which preferentially inhabited the sublittoral zone, chaoborids and crustaceans were more numerous in the profundal zone. The sediment-dwelling oligochaetes remained numerous in both zones, according to the season. The fourth copepodite stages of Cyclops and Tubifex are tolerant to low oxygen concentrations in contrast to the fourth instar larvae of Chaoborus whose distribution was positively correlated with oxygen. The guts of these dipteran larvae were found to be empty and we assumed that, in contrast to the chironomids and oligochaetes, the resting stages of Cyclops vicinus and the benthic stages of Chaoborus flavicans did not use benthic resources. The former are activated at the autumn overturn, while the latter escape from the bottom at the start of the spring oxygen depletion. This suggests that physical factors are largely responsible for their reactivation. Both animals suffered of the effects of starvation and probably lost weight. The reactivation of the copepod at the autumn overturn would be facilitated by fluid mechanical disturbance. In addition, after the spring overturn, a small increase in temperature near 4 °C would be a reliable environmental signal for the dipteran. Food limitation does not occur, invertebrate predation pressure seems to be negligible and the predation by fish on the macrobenthic fauna and by chance on the meiofauna, clearly remains limited in both space and time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Vendozoa: Organismic construction in the Proterozoic biosphere   总被引:11,自引:0,他引:11  
Seilacher, Adolf 1989 07 15: Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia , Vol. 22. pp. 229–239. Oslo. ISSN 0024–1164.
Ediacara-type impressions of large, but flat and soft-bodied organisms in Late Proterozoic rocks are here interpreted not as ancestors of modern animal phyla, but as foliate pneu constructions, whose quilting patterns had to be accommodated with various modes of growth. In this view Vendozoa represent an evolutionary experiment that failed with the coming of macropbagous predators. True Metazoa are also represented, but in the form of trace fossils rather than body impressions. * Precambrian fossils, evolution, constructional morphology .  相似文献   

11.
Effect of proline on the production of singlet oxygen   总被引:14,自引:0,他引:14  
Alia  Mohanty P  Matysik J 《Amino acids》2001,21(2):195-200
Molecular oxygen in electronic singlet state is a very powerful oxidant. Its damaging action in a variety of biological processes has been well recognized. Here we report the singlet oxygen quenching action of proline. Singlet oxygen (1O2) was produced photochemically by irradiating a solution of sensitiser and detected by following the formation of stable nitroxide radical yielded in the reaction of 1O2 with the sterically hindered amine (2,2,6,6-tetramethylpiperidine, TEMP). Illumination of a sensitiser, toluidine blue led to a time dependent increase in singlet oxygen production as detected by the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) by EPR spectrometry. Interestingly, the production of TEMPO was completely abolished by the presence of proline at concentration as low as 20mM. These results show that proline is a very effective singlet oxygen quencher. Other singlet oxygen generating photosensitizer like hematopophyrin and fluorescein also produced identical results with proline. Since proline is one of the important solutes which accumulate in many organisms when they are exposed to environmental stresses, it is likely that proline accumulation is related to the protection of these organisms against singlet oxygen production during stress conditions. A possible mechanism of singlet oxygen quenching by proline is discussed.  相似文献   

12.
When cell-saturating amounts of glucose and phosphate were added to steady state cultures of Klebsiella aerogenes that were, respectively, glucose- and phosphate-limited, the organisms responded immediately with an increased oxygen consumption rate. This suggested that in neither case was glucose transport the rate-limiting process, and also that organisms must possess effective mechanisms for spilling the excess energy initially generated when a growth-limitation is temporarily relieved. Steady state cultures of mannitol- or glucose-limited organisms also seemingly generated energy at a greater rate than was required for cell synthesis since gluconate-limited cultures consumed oxygen at a lower rate, at each corresponding growth rate, than did mannitol- or glucose-limited cultures, and therefore expressed a higher YO value. Thus, mannitol- and glucose-limitations must be essentially carbon (and not energy) limitations. The excess energy generated by glucose metabolism is one component of "maintenance" and could be used at lower growth rates to maintain an increased solute gradient across the cell membrane, imposed by the addition of 2%, w/v, NaCl to the growth environment. The maintenance rates of oxygen consumption of K. aerogenes also could be caused to increase by adding glucose discontinuously (drop-wise) to a glucose-limited chemostat culture, or by exchanging nitrate for ammonia as the sole utilizable nitrogen source. The significance of these findings to an assessment of the physiological factors circumscribing energy-spilling reactions in aerobic cultures of K. aerogenes is discussed.  相似文献   

13.
Large amounts of well preserved microfossils have been reported from the cherts of the Upper Proterozoic of the Bohemian Massif (Middle Europe). They resemble those described by Cayeux (1894) from the Upper Proterozoic (Brioverian) of Bretagne (France). It is shown, unlike the views of Cayeux and his followers (Deflandre, 1955, and Graindor 1957), that the observed structures did not belong to individuals but to colonies of filamentous prokaryotic organisms, most probably blue-green algae (Cyanophyta). These produced specific crystal-like mineral aggregation round each filament. Scanning microscope examination has revealed that the individual facets of these mineral crystals were perforated by the openings through which the thread-like bodies of these primitive organisms protruded. It is shown that these microorganisms were attached to the cells of other, bigger microorganisms and enveloped them. Some of these substrate organisms might have been eukaryotic algae. The thecae gradually accumulated around the cells of these carrier organisms and after death the colonies disintegrated to constitute the main component of the sediment. The microfossils described are just a major component of a complicated fossil assemblage comprising coccoid and filamentous blue-green algae and bacteria. There are indications that several eukaryotic species might also have been present.The following new taxa are described:Thecophytales, new order,Cayeuxidae (Graindor) family emend.,Bohemipora n. gen.,B. pragensis, n. sp.  相似文献   

14.
Eukaryotic organisms in Proterozoic oceans   总被引:9,自引:0,他引:9  
The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800-1300 Myr old rocks. 1300-720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.  相似文献   

15.
Nitrogen is an essential element to life and exerts a strong control on global biological productivity. The rise and spread of nitrogen‐utilizing microbial metabolisms profoundly shaped the biosphere on the early Earth. Here, we reconciled gene and species trees to identify birth and horizontal gene transfer events for key nitrogen‐cycling genes, dated with a time‐calibrated tree of life, in order to examine the timing of the proliferation of these metabolisms across the tree of life. Our results provide new insights into the evolution of the early nitrogen cycle that expand on geochemical reconstructions. We observed widespread horizontal gene transfer of molybdenum‐based nitrogenase back to the Archean, minor horizontal transfer of genes for nitrate reduction in the Archean, and an increase in the proliferation of genes metabolizing nitrite around the time of the Mesoproterozoic (~1.5 Ga). The latter coincides with recent geochemical evidence for a mid‐Proterozoic rise in oxygen levels. Geochemical evidence of biological nitrate utilization in the Archean and early Proterozoic may reflect at least some contribution of dissimilatory nitrate reduction to ammonium (DNRA) rather than pure denitrification to N2. Our results thus help unravel the relative dominance of two metabolic pathways that are not distinguishable with current geochemical tools. Overall, our findings thus provide novel constraints for understanding the evolution of the nitrogen cycle over time and provide insights into the bioavailability of various nitrogen sources in the early Earth with possible implications for the emergence of eukaryotic life.  相似文献   

16.
Moderate and severe stages of congestive heart failure due to the loss of myocardium upon coronary occlusion in rats was associated with an increase in alpha-adrenergic receptors and a decrease in beta-adrenergic receptors in the viable left ventricle. However, at early stages of heart failure the number of beta-adrenergic receptors was decreased without any changes in the number of alpha-adrenergic receptors. The affinities of these receptors to alpha receptor antagonist (3H-prazosin) and beta receptor antagonist (3H-dihydroalprenolol) were not altered in the failing hearts. On the other hand, the pattern of changes in both alpha- and beta-adrenergic receptors in heart membranes treated with oxygen free radical generating system was different from that seen in the failing hearts. In particular, the affinities for these receptors were decreased whereas the number of beta-receptors was increased and the number of alpha-receptors was decreased or unchanged. These results indicate that alterations in the adrenergic receptors in heart failure are not due to the formation of oxygen free radicals.  相似文献   

17.
The sensitivity of three strains of anaerobic intestinal bacteria, Clostridium perfringens, Bacteroides fragilis, and Peptococcus magnus, to the differential effects of oxygen and adverse oxidation-reduction potential was measured. The multiplication of the three organisms was inhibited in the presence of oxygen whether the medium was at a negative oxidation-reduction potential (Eh of -50 mV), poised by the intermittent addition of dithiothreitol, or at a positive oxidation-reduction potential (Eh of near +500 mV). However, when these organisms were cultured in the presence of oxygen, no inhibition was observed, even when the oxidation-reduction potential was maintained at an average Eh of +325 mV by the addition of potassium ferricyanide. When the cultures were aerated, the growth patterns of the three organisms demonstrated different sensitivities to oxygen. P. magnus was found to be the most sensitive. After 2 h of aerobic incubation, no viable organisms could be detected. B. fragilis was intermediately sensitive to oxygen with no viable organisms detected after 5 h of aerobic incubation. C. perfringens was the least sensitive. Under conditions of aerobic incubation, viable organisms survived for 10 h. During the experiments with Clostridium, no spores were observed by spore staining.  相似文献   

18.
von Hegner  Ian 《Acta biotheoretica》2021,69(4):783-798

Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. Thus, a reduction in organism quantity in stage 1 might increase organism quality towards a second stress challenge in stage 3. Thus, robustness towards a stressor might in fact be higher in the bacterial population surviving after transport in stage 3 than at the beginning in stage 1. Therefore, the stages of lithopanspermia can themselves facilitate evolutionary processes that enhance the ability of the collected organisms to survive stresses such as pressure and heat shock. Thus, the multiple abiotic pressures that the population encounters through the three stages can potentially lead to very robust bacteria with survival capacities considerably higher than might otherwise be expected. This analysis details an outcome that is possible but probably rare. However, in addition to lithopanspermia, spacecraft mediated panspermia may also exist. The analogous stages in a spacecraft would result in a greater likelihood of increasing the stress tolerance of hitchhiking organisms. Furthermore, missions seeking life elsewhere will frequently be sent to places where the possibility of life as we know it is assumed to exist. Thus, we not only can transport terrestrial organisms to places where they are potentially more likely to survive but also may increase their invasive potential along the way. This analysis highlights further requirements that planetary protection protocols must implement and also provides a framework for analyses of ecological scenarios regarding the transmission of life, natural or artificial, between worlds in a solar system.

  相似文献   

19.
The hexose sugar, glucose, is a vital energy source for most organisms and an essential nutrient for asexual stages of Plasmodium falciparum. Kinetoplastid organisms (e.g. Trypanosoma and Leishmania spp) also require glucose at certain critical stages of their life cycles. Although phylogenetically unrelated, these organisms share many common challenges during the mammalian stages of a parasitic life cycle, and possess hexose uptake mechanisms that are amenable to study using similar methods. Defining hexose permeation pathways into parasites might expose an Achilles' heel at which both antidisease and antiparasite measures can be aimed. Understanding the mode of entry of glucose also presents a good general model for substrate acquisition in multicompartment systems. In this review, Sanjeev Krishna and colleagues summarize current understanding of hexose transport processes in P. falciparum and provide a comparison with data obtained from kinetoplastids.  相似文献   

20.
We estimated the serum levels of IL-6, TNF-alpha and IL-10, and generation of superoxide radicals, as well as their mutual dependence, in 63 SLE patients at various stages of disease activity. Our results indicate a statistically significant increase of the serum levels studied, and an increase of superoxide anion generation by granulocytes, in correlation with SLE activity. These results indicate that oxygen metabolism and the examined cytokines play an important role in pathogenesis of SLE. The assessment of these parameters can be useful in the estimation of disease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号