首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of adaptation to stressful environments have frequently encountered cross resistance. This has prompted the hypothesis that certain adaptations confer resistance to multiple stressors. Some of the genes and mechanisms conferring stress resistance have been identified, however, the generality and basis of stress adaptation and cross resistance is still unclear. We investigated several physiological traits that have been previously linked to increased stress resistance: Hsp70 expression, fat content and dopamine levels. Additionally, we studied a behavioural trait, locomotor activity, as a proxy for the physiological state of the organisms. Physiology is the mechanistic link between resistance phenotype and underlying genetic background, and provides insights into the background and generality of cross resistance and correlated responses to selection for stress resistance. We assessed the relationship between the measured traits and stress resistance in a set of lines selected for increased resistance to several environmental stressors. We found that, although all physiological traits displayed significant differentiation among selection regimes, none were consistently associated with increased general stress resistance. This demonstrates that directional changes in Hsp70 expression level, dopamine level and fat content occur in response to the specific requirements of the different stress regimes, rather than as a general response to stress.  相似文献   

2.
We show with a model that variation in environmental stress between generations facilitates the evolution of stress resistance through assortative mating. Stress induces delayed maturation of susceptible phenotypes, segregating their fertile period from resistant phenotypes. Assortment of mates enhances the responsiveness of populations to natural selection by inflating genetic variance. Thus, positive selection and inflated genetic variance in stressful environments can cause a strong evolutionary increase in resistance. By contrast, benign environments do not segregate phenotypes, and the random mating among phenotypes deflates genetic variance, leading to a weaker response to selection against resistance, assuming that resistance is costly. When environments vary randomly from benign to stressful, populations respond asymmetrically to negative and positive selection. This asymmetry (1) accelerates fixation of a resistance allele if resistance is generally favoured (stressful generations more frequent) but delays the loss of the allele if it is generally disfavoured (benign generations more frequent), and (2) it can push a resistance allele to fixation even when long‐term costs modestly exceed benefits. When resistance alleles pleiotropically delay mating, stress‐induced random mating has complementary effects. Serial autocorrelation in the stressor amplifies these effects. These results suggest a novel mechanism for the persistence of resistance polymorphisms.  相似文献   

3.
G. McColl  A. A. Hoffmann    S. W. McKechnie 《Genetics》1996,143(4):1615-1627
To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance.  相似文献   

4.
We investigate changes in resistance to desiccation and starvation during adaptation of Drosophila melanogaster to laboratory culture. We test the hypothesis that resistance to environmental stresses is lost under laboratory adaptation. For both traits, there was a rapid loss of resistance over a three-year period. The rapidity of the response suggested that mutation accumulation could not account for it. Rather, resistance to environmental stresses appeared to be lost as a correlated response to selection on another trait, such as early fertility, with which stress resistance is negatively genetically correlated. These results suggest that caution is needed when extrapolating from evolution of stress resistance in long-established laboratory stocks to patterns of responses and correlated responses in natural populations.  相似文献   

5.
We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable - if not critical - to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems ofDrosophila species, representing both cosmopolitan species such asD. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilicD. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.  相似文献   

6.
Adaptation of natural and laboratory-selected populations of Drosophila to desiccation stress results in enhanced water conservation abilities, and thus increased stress resistance. In this study, we tested whether laboratory selection for desiccation resistance is also reflected in increased mating success of adapted D. melanogaster males under desiccating conditions. Adapted flies perform better under stressful conditions, and as expected males from desiccation-selected populations exhibited significantly higher relative mating success in comparison with controls after 5–6 h of desiccation. However, we show evidence for a trade-off between survival under stressful conditions and mating success in nonstressful and even mildly stressful environments (2.5–3 h of desiccation), where males from selected populations were involved in only ∼40% of observed copulations. This suggests that mutations favored by natural selection, associated with survival when resources are limited, may only be favored by sexual selection above a minimal "threshold" stress level. At milder stress levels increased resistance comes at a cost of lower relative mating success, and thus reduced fitness. This interaction between stress and relative male mating success of adapted and nonadapted males could interrupt gene flow, thus facilitating divergence of resistant populations from the ancestral population.  相似文献   

7.
Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and outbred lines of five tropical and five widespread Drosophila species. Our results confirm that tropical species have lower cold resistance compared to widespread species, and show that (1) inbreeding reduces inherent cold resistance in both tropical and widespread species, (2) inbreeding does not affect the ability to respond adaptively to temperature acclimation, and (3) tropical species with low basal resistance show stronger adaptive plastic responses to developmental acclimation compared to widespread species.  相似文献   

8.
Microarrays have been used to examine changes in gene expression underlying responses to selection for increased stress resistance in Drosophila melanogaster, but changes in expression patterns associated with increased resistance to cold stress have not been previously reported. Here we describe such changes in basal expression levels in replicate lines following selection for increased resistance to chill coma stress. We found significant up- or down-regulation of expression in 94 genes on the Affymetrix Genome 2.0 array. Quantitative RT-PCR was used to confirm changes in expression of six genes. Some of the identified genes had previously been associated with stress resistance but no previously identified candidate genes for cold resistance showed altered patterns of expression. Seven differentially expressed genes that form a tight chromosomal cluster and an unlinked gene AnnX may be potentially important for cold adaptation in natural populations. Artificial selection for chill coma resistance therefore altered basal patterns of gene expression, but we failed to link these changes to plastic changes in expression under cold stress or to previously identified candidate genes for components of cold resistance.  相似文献   

9.
Evolution of plant resistance and tolerance to frost damage   总被引:1,自引:0,他引:1  
Plant defence against any type of stress may involve resistance (traits that reduce damage) or tolerance (traits that reduce the negative fitness impacts of damage). These two strategies have been proposed as redundant evolutionary alternatives. A late‐season frost enabled us to estimate natural selection and genetic constraints on the evolution of frost resistance and tolerance in a wild plant species. We employed a genetic selection analysis (which is unbiased by environmental correlations between traits and fitness) on 75 paternal half‐sibling families of annual wild radish [Raphanus raphanistrum (Brassicaceae)]. In an experimental population in southern Ontario, we found strong selection favouring plant resistance to frost, but selection against tolerance to frost. The selection against tolerance may have been caused by a cost of tolerance, as we provide evidence for a negative genetic correlation between tolerance and fitness in the absence of frost damage. Although we found no evidence for the theoretically predicted trade‐off between frost tolerance and resistance among our families, we did detect negative correlational selection acting on the two traits, indicating that natural selection favoured high resistance combined with low tolerance and low resistance coupled with high tolerance, but not high or low levels of both traits together. There were few genetic correlations between the measured traits overall, but frost tolerance was negatively correlated with initial seed mass, and frost resistance was positively correlated with resistance to insect herbivory. Periodic episodes of strong selection such as that caused by the late‐season frost may be disproportionately important in evolution, and are likely becoming more common because of human alterations of the environment.  相似文献   

10.
Oxidative stress has recently been suggested to play an important role in life‐history evolution, but little is known about natural variation and heritability of this physiological trait. Here, we explore phenotypic variation in resistance to oxidative stress of cross‐fostered yellow‐legged gull (Larus cachinnans) chicks. Resistance to oxidative stress was not related to plasma antioxidants at hatching, which are mostly derived from maternal investment into eggs. Common environmental effects on phenotypic variation in resistance to oxidative stress were not significant. Heritability was relatively low and nonsignificant in hatchlings, but interestingly, the chicks of age 8 days showed high and significant heritability (h2 = 0.59). Our results suggest that resistance to oxidative stress is determined mainly by the genotype as chicks grow. Further work is required to explore the genetic role of oxidative stress in life‐history evolution.  相似文献   

11.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   

12.
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin‐based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin‐based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments.  相似文献   

13.
利用111个家系组成的热研2号(Oryza sativa subsp. japonica ‘Reyan2’)/ Mi lyang23(Oryza sativa subsp. indica ‘Mi lyang23’)重组自交系(recombinant inbred l ines, RIL)群体(F7), 采用重病区田间自然接种方法, 以病情指数作为条纹叶枯病的表型值, 鉴定了2个亲本及111个RIL家系对条纹叶枯病的抗性。使用QTL Cartographer 软件复合区间作图法, 对水稻(Oryza a sativa)条纹叶枯病抗性基因进行了QTL分析。结果检测到2个抗水稻条纹叶枯病的QTL, 分别位于第2和第11染色体上, 其中第11染色体上的QTL贡献率为19.58%, 表明这是一个主效的QTL, 该QTL及其附近的分子标记, 可以用于水稻条纹叶枯病抗性分子标记辅助育种。  相似文献   

14.
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed ‘cross‐tolerance’. The nature and magnitude of cross‐tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross‐tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross‐tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross‐tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross‐resistant than CTmax). The results of this study have two major implications that are of broader importance: (i) that these traits likely co‐evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross‐tolerance.  相似文献   

15.
Variation in susceptibility to infection has a substantial genetic component in natural populations, and it has been argued that selection by pathogens may result in it having a simpler genetic architecture than many other quantitative traits. This is important as models of host–pathogen co‐evolution typically assume resistance is controlled by a small number of genes. Using the Drosophila melanogaster multiparent advanced intercross, we investigated the genetic architecture of resistance to two naturally occurring viruses, the sigma virus and DCV (Drosophila C virus). We found extensive genetic variation in resistance to both viruses. For DCV resistance, this variation is largely caused by two major‐effect loci. Sigma virus resistance involves more genes – we mapped five loci, and together these explained less than half the genetic variance. Nonetheless, several of these had a large effect on resistance. Models of co‐evolution typically assume strong epistatic interactions between polymorphisms controlling resistance, but we were only able to detect one locus that altered the effect of the main effect loci we had mapped. Most of the loci we mapped were probably at an intermediate frequency in natural populations. Overall, our results are consistent with major‐effect genes commonly affecting susceptibility to infectious diseases, with DCV resistance being a near‐Mendelian trait.  相似文献   

16.
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.  相似文献   

17.
Thermal‐stress selection can affect multiple fitness components including mating success. Reproductive success is one of the most inclusive measures of overall fitness, and mating success is a major component of reproduction. However, almost no attention has been spent to test how mating success can be affected by thermal‐stress selection. In this study, we examine the mating success in the cactophilic Drosophila buzzatii Patterson & Wheeler (Diptera: Drosophilidae) derived from two natural populations that nearly represent the ends of an altitudinal cline for heat knock‐down resistance. Furthermore, we extended the analysis using laboratory lines artificially selected for high and low heat knock‐down resistance. Mating success at high temperature was found to be higher in the lowland than the highland population after a heat pre‐treatment. Moreover, individuals selected for heat knock‐down resistance showed higher mating success at high temperature than did individuals selected for low knock‐down resistance. These results indicate that adaptation to thermal stress can confer an advantage on fitness‐related traits including mating success and highlight the benefits of earlier heat exposure as an adaptive plastic response affecting mating success under stress of higher temperature.  相似文献   

18.
19.
Stress resistance traits in Drosophila often show clinal variation. Although these patterns suggest selection, there is generally no attempt to test how large differences at the geographical level are relative to levels of variation within and between local populations. Here we compare these levels in D. melanogaster from temperate Tasmania versus tropical northern Queensland by focusing on adult resistance to desiccation, cold and starvation stress, as well as associated traits (size, lipid content). For starvation and desiccation resistance, levels of variation were highest among strains from the same population. whereas there was little differentiation among local populations and a low level of differentiation at the geographic level. For adult cold resistance, there was local differentiation and strain variation but no geographic variation. For size (thorax length), geographic differentiation was higher despite some overlap among strains from the tropical and temperate locations. Finally, for lipid levels there was only evidence for variation among strains. The low level of differentiation among geographic locations for stress resistance was further verified with the characterization of isofemale strains from 18 locations along a coastal transect extending from Tasmania to northern Queensland. Crosses among some of the isofemale strains showed that results were not confounded by inbreeding effects. Strains derived from a cross between a tropical and temperate strain differed for all traits, and variation among strains for body size was higher than strain variation within the geographic regions. Unlike in previous studies, lipid content and starvation resistance were not correlated in any set of strains, but there was a correlation between cold resistance and lipid content. There was also a correlation between desiccation resistance and size but only in the geographic cross strains. These findings suggest a large amount of variation in stress resistance at the population level and inconsistent correlation patterns across experimental approaches.  相似文献   

20.
Plants in their natural environments are constantly subjected to biotic stress. In addition to possessing physical barriers and anti-nutritive toxins, plants can be primed to respond more efficiently against future attack via faster and stronger gene activation. Here we discuss recent findings showing that plants can pass signatures of attack to the next generation, thus rendering the progeny more resistant against insect and pathogen attack. A combination of phytohormone signaling, small RNA-mediated gene silencing and DNA methylation are involved in transgenerational induced resistance. Epiallelic variation against biotic threats should be under positive selection in populations of plants where the environment is predictable over time. Similarly, in very genetically homogenous populations, such as during range expansion, epigenome reorganization is a likely mechanism for faster plant adaptation to novel biotic attack. Further research is needed to understand the relative role of the genome vs. the epigenome for the evolution of increased plant resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号