首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海洋古菌多样性研究进展   总被引:4,自引:0,他引:4  
海洋古菌是海洋微生物中的一个大的类群,然而绝大多数的古菌不能分离培养.近年来分子生物学的方法广泛地应用于微生物多样性的研究中,研究发现,海洋古菌广泛地生活在各类海域环境中,而不仅仅是生活在极端的环境中.海洋古菌为海洋生态系统中主要的原核细胞成分,在海洋生态系统中的物质与能量循环中扮演着重要角色.主要阐述了生活在海洋不同环境中海洋古菌的多样性,有海洋浮游古菌的多样性、海底环境及海洋沉积物中古菌的多样性、附着或寄共生古菌多样性等的研究状况,以及研究海洋古菌多样性的分子生物学的主要方法.  相似文献   

2.
All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.  相似文献   

3.
The three domains of life on Earth include the two prokaryotic groups, Archaea and Bacteria. The Archaea are distinguished from Bacteriabased on phylogenetic and biochemical differences, but currently there is no unifying ecological principle to differentiate these groups. The ecology of the Archaea is reviewed here in terms of cellular bioenergetics. Adaptation to chronic energy stress is hypothesized to be the crucial factor that distinguishes the Archaea from Bacteria. The biochemical mechanisms that enable archaea to cope with chronic energy stress include low-permeability membranes and specific catabolic pathways. Based on the ecological unity and biochemical adaptations among archaea, I propose the hypothesis that chronic energy stress is the primary selective pressure governing the evolution of the Archaea.  相似文献   

4.
This study was conducted to characterize the vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu, which underwent a change in trophic status from oligotrophic to hypertrophic in last half of the 20th century. The results revealed that the bacterial communities in different layers of sediment sample were very similar, and were related to Alpha -, Beta -, Gamma - and Deltaproteobacteria, Nitrospira, Bacteroidetes, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Chlorobi, Actinobacteria and Acidobacteria . In contrast, the archaeal communities varied greatly with depth. The archaeal communities were primarily related to Euryarchaeota and Crenarchaeota , with methanogenic Archaea accounting for approximately 2–35% of the total Archaea. Additionally, sequences related to putative ammonia-oxidizing Archaea and ammonia-oxidizing Bacteria were detected in different layers of sediment samples. The abundance of Archaea, Bacteria, methanogenic Archaea and Nitrospira was further characterized by real-time PCR.  相似文献   

5.
The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.  相似文献   

6.
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.  相似文献   

7.
The recently developed CARD-FISH protocol was refined for the detection of marine Archaea by replacing the lysozyme permeabilization treatment with proteinase K. This modification resulted in about twofold-higher detection rates for Archaea in deep waters. Using this method in combination with microautoradiography, we found that Archaea are more abundant than Bacteria (42% versus 32% of 4',6'-diamidino-2-phenylindole counts) in the deep waters of the North Atlantic and that a larger fraction of Archaea than of Bacteria takes up l-aspartic acid (19% versus 10%).  相似文献   

8.
Aims:  To screen a pair of primers suitable for denaturing gradient gel electrophoretic (DGGE) analysis of ruminal methanogenic Archaea and to detect the archaeal communities in the rumen of goat.
Methods and Results:  Nine primer pairs for 16S rDNA of methanogenic Archaea , including six for directed polymerase chain reaction (PCR) and three for nested PCR were first evaluated by PCR amplification of the total DNA from rumen fluids and bacteria. The DGGE analysis of rumen fluids was then conducted with three primer sets (344fGC/915r, 1106fGC/1378r and 519f/915rGC) of the nine pairs tested. Good separation and quality of patterns were obtained in DGGE analysis with primer pairs 1106fGC/1378r and 519f/915rGC. A total of 40 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic Archaea while primer pair 519f/915rGC had better amplification ranges than the other two primer pairs.
Conclusions:  The procedure of DGGE analysis with primer pair 519f/915rGC was more suitable for investigating methanogenic archaeal community in the rumen. The dominant methanogenic Archaea in the rumen of goat was Methanobrevibacter sp. and an unidentified methanogenic Archaea .
Significance and Impact of the Study:  One pair of primers suitable for DGGE analysis of ruminal methanogenic Archaea was obtained and the molecular diversity of ruminal methanogenic Archaea in goat was investigated by PCR-DGGE.  相似文献   

9.
While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 days. In contrast, in oil-polluted microcosms a dramatic decrease in the ability to detect Archaea was observed, and it was not possible to amplify fragments of archaeal 16S rRNA genes from samples taken from microcosms treated with oil. This was the case irrespective of whether a bioremediation treatment (addition of inorganic nutrients) was applied. Since rapid oil biodegradation occurred in nutrient-treated microcosms, we concluded that Archaea are unlikely to play a role in oil degradation in beach ecosystems. A clear-cut relationship between the presence of oil and the absence of Archaea was not apparent in the field experiment. This may have been related to continuous inoculation of beach sediments in the field with Archaea from seawater or invertebrates and shows that the reestablishment of Archaea following bioremediation cannot be used as a determinant of ecosystem recovery following bioremediation. Comparative 16S rRNA sequence analysis showed that the majority of the Archaea detected (94%) belonged to a novel, distinct cluster of group II uncultured Euryarchaeota, which exhibited less than 87% identity to previously described sequences. A minor contribution of group I uncultured Crenarchaeota was observed.  相似文献   

10.
Recent biochemical and metagenomic data indicate that not yet cultured Archaea that are closely related to methanogenic Archaea of the order of Methanosarcinales are involved in the anaerobic oxidation of methane in marine sediments. The DNA from the methanotrophic Archaea has been shown to harbor gene homologues for methyl-coenzyme M reductase, which in methanogenic Archaea catalyses the methane-forming reaction. In microbial mats catalyzing anaerobic oxidation of methane, this nickel enzyme has been shown to be present in concentrations of up to 10% of the total extracted proteins.  相似文献   

11.
Background  Methanogenesis by methanogenic Archaea and sulfate reduction by sulfate reducing bacteria (SRB) are the major hydrogenotrophic pathways in the human colon. Methanogenic status of mammals is suggested to be under evolutionary rather than dietary control. However, information is lacking regarding the dynamics of hydrogenotrophic microbial communities among different primate species.
Methods  Rectal swabs were collected from 10 sooty mangabeys ( Cercocebus atys ) and 10 baboons ( Papio hamadryas ). The diversity and abundance of methanogens and SRB were examined using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR).
Results  The DGGE results revealed that intestinal Archaea and SRB communities differ between mangabeys and baboons. Phylogenetic analyses of Archaea DGGE bands revealed two distinct clusters with one representing a putative novel order of methanogenic Archaea. The qPCR detected a similar abundance of methanogens and SRB.
Conclusions  Intestinal Archaea and SRB coexist in these primates, and the community patterns are host species-specific.  相似文献   

12.
PCR-amplified 16S rRNA genes from particle-attached and free-living Archaea in the Columbia River estuary, particle-attached Archaea in the river, and Archaea in the adjacent coastal ocean were cloned, and 43 partial sequences were determined. There was a high diversity of Archaea in the estuary, especially among the particle-attached Archaea, with representatives from four major phylogenetic clusters. Eighteen of 21 estuarine clones were closely related to clones from the river and the coastal ocean or to clusters of marine and soil clones identified in other studies. This contrasts with a similar study of the estuarine bacterial community that found 62% of bacterial 16S rRNA clones to be unique to the estuary. Archaea in the estuary were primarily allochthonous, and therefore, unlike the bacteria, probably do not form a native estuarine community.  相似文献   

13.
The 5'-end maturation of tRNAs is catalyzed by the ribonucleoprotein enzyme ribonuclease P (RNase P) in all organisms. Here we provide, for the first time, a comprehensive overview on the representation of individual RNase P protein homologs within the Eukarya and Archaea. Most eukaryotes have homologs for all four protein subunits (Pop4, Rpp1, Pop5 and Rpr2) present in the majority of Archaea. Pop4 is the only RNase P protein subunit identifiable in all Eukarya and Archaea with available genome sequences. Remarkably, there is no structural homology between bacterial and archaeal-eukaryotic RNase P proteins. The simplest interpretation is that RNase P has an 'RNA-alone' origin and progenitors of Bacteria and Archaea diverged very early in evolution and then pursued completely different strategies in the recruitment of protein subunits during the transition from the 'RNA-alone' to the 'RNA-protein' state of the enzyme.  相似文献   

14.
There is controversy regarding the existence of archaeal pathogens. Periodontitis is one of the human diseases in which Archaea have been suggested to have roles as pathogens. This study was performed to investigate the distribution of Archaea in Japanese patients with periodontitis and to examine the serum IgG responses to archaeal components. Subgingival plaque samples were collected from 111 periodontal pockets of 49 patients (17 with aggressive periodontitis and 32 with chronic periodontitis), and 30 subgingival plaque samples were collected from 17 healthy subjects. By PCR targeting the 16S rRNA gene, Archaea were detected in 15 plaque samples (13.5% of total samples) from 11 patients (29.4% of patients with aggressive periodontitis and 18.8% of patients with chronic periodontitis). Archaea were detected mostly (14/15) in severe diseased sites (pocket depth >/=6 mm), while no amplicons were observed in any samples from healthy controls. Sequence analysis of the PCR products revealed that the majority of Archaea in periodontal pockets were a Methanobrevibacter oralis-like phylotype. Western immunoblotting detected IgG antibodies against M. oralis in eight of the 11 sera from patients. These results suggest the potential of Archaea (M. oralis) as an antigenic pathogen of periodontitis.  相似文献   

15.
古生菌是一类区别于真细菌和真核生物的第三域生命形式 ,转录是生物体遗传信息传递系统中的一个中心环节。近年来研究结果表明 ,古生菌的转录系统具有真细菌和真核生物的融合特征 :古生菌的基本转录装置包括RNA聚合酶、基本转录因子、启动子元件等与真核生物相似 ;而古生菌的转录调控机制却更加类似于真细菌 ,在古生菌中发现并鉴定了许多类似于真细菌的转录调控蛋白。另外古生菌还具有某些独特的转录调控方式  相似文献   

16.
Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control.  相似文献   

17.
The ability of Eukarya, Bacteria and Archaea to perform N -glycosylation underlies the importance and possible antiquity of this post-translational protein modification. However, in contrast to the relatively well-studied eukaryal and bacterial pathways, the archaeal N -glycosylation process is less understood. To remedy this disparity, the following study has examined 56 available archaeal genomes with the aim of identifying glycosyltransferases and oligosaccharyltransferases, including those putatively catalyzing this post-translational processing event. This analysis reveals that while oligosaccharyltransferases, central components of the N -glycosylation pathway, are found across the range of archaeal phenotypes, the N -glycosylation machinery of hyperthermophilic Archaea may well rely on fewer components than do the parallel systems of nonhyperthermophilic Archaea. Moreover, genes encoding predicted glycosyltransferases of hyperthermophilic Archaea tend to be far more scattered within the genome than is the case with nonhyperthermophilic species, where putative glycosyltransferase genes are often clustered around identified oligosaccharyltransferase-encoding sequences.  相似文献   

18.
The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments.  相似文献   

19.
Comparative biochemistry of Archaea and Bacteria.   总被引:11,自引:0,他引:11  
This review compares exemplary molecular and metabolic features of Archaea and Bacteria in terms of phylogenetic aspects. The results of the comparison confirm the coherence of the Archaea as postulated by Woese. Archaea and Bacteria share many basic features of their genetic machinery and their central metabolism. Similarities and distinctions allow projections regarding the nature of the common ancestor and the process of lineage diversification.  相似文献   

20.
We report here on novel groups of Archaea in the bacterioplankton of a small boreal forest lake studied by the culture-independent analysis of the 16S rRNA genes amplified directly from lake water in combination with fluorescent in situ hybridization (FISH). Polymerase chain reaction products were cloned and 28 of the 160 Archaea clones with around 900-bp-long 16S rRNA gene inserts, were sequenced. Phylogenetic analysis, including 642 Archaea sequences, confirmed that none of the freshwater clones were closely affiliated with known cultured Archaea. Twelve Archaea sequences from lake Valkea Kotinen (VAL) belonged to Group I of uncultivated Crenarchaeota and affiliated with environmental sequences from freshwater sediments, rice roots and soil as well as with sequences from an anaerobic digestor. Eight of the Crenarchaeota VAL clones formed a tight cluster. Sixteen sequences belonged to Euryarchaeota. Four of these formed a cluster together with environmental sequences from freshwater sediments and peat bogs within the order Methanomicrobiales. Five were affiliated with sequences from marine sediments situated close to marine Group II and three formed a novel cluster VAL III distantly related to the order Thermoplasmales. The remaining four clones formed a distinct clade within a phylogenetic radiation characterized by members of the orders Methanosarcinales and Methanomicrobiales on the same branch as rice cluster I, detected recently on rice roots and in anoxic bulk soil of flooded rice microcosms. FISH with specifically designed rRNA-targeted oligonucleotide probes revealed the presence of Methanomicrobiales in the studied lake. These observations indicate a new ecological niche for many novel 'non-extreme' environmental Archaea in the pelagic water of a boreal forest lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号