首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Converting a eukaryotic transcriptional inhibitor into an activator   总被引:12,自引:0,他引:12  
J Ma  M Ptashne 《Cell》1988,55(3):443-446
  相似文献   

2.
3.
4.
Incubation of HTC rat hepatoma cells with dexamethasone causes a rapid decrease in cellular plasminogen activator (PA) activity. Mixing experiments show the presence of an inhibitor of PA in dexamethasone-treated cells. This study investigates whether the decrease in PA activity is secondary to the induction of an inhibitor by glucocorticoids, to a decrease in the amount of PA, or to a combination of both mechanisms. PA and its inhibitor are dissociated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing conditions, and both activities are then recovered and quantitated. HTC cells have two major forms of PA with Mr values of 110,000 and 64,000. Although PA activity in the unfractionated extracts from dexamethasone-treated cells is inhibited by 90% relative to control, there is no decrease in the total activity of sodium dodecyl sulfate-dissociated PA activity, suggesting that dexamethasone causes no decrease in the amount of the enzyme. PA inhibitor activity migrates as a single band of Mr = 50,000. The total activity of inhibitor increases in a time-dependent fashion, reaching a maximum of greater than 10 times control after a 4-6-h incubation with 0.1 microM dexamethasone. The induction of inhibitor requires both RNA and protein synthesis and shows a dependence on dexamethasone concentration identical to that for responses known to be mediated by glucocorticoid receptors. We conclude that dexamethasone inhibits PA activity by inducing the synthesis of an inhibitor rather than by decreasing the amount of PA.  相似文献   

5.
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.  相似文献   

6.
A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.  相似文献   

7.
8.
v-jun is a transcriptional activator, but not in all cell-lines   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

9.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

10.
11.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

12.
The tetrapeptide N-Acetyl-Ser-Asp-Lys-Pro (AcSDKP), an inhibitor of haematopoietic stem cell proliferation, reduces in vivo and in vitro the damage to the stem cell compartment resulting from treatment with chemotherapeutic agents or ionizing radiations. In order to provide new molecules likely to improve the myeloprotection displayed by this tetrapeptide, we have prepared a set of analogues of AcSDKP. These compounds are derived from the parent peptide by substitution or modification of the N- or of the C-terminus, or substitution of side chains. We report here that almost all investigated analogues retain the antiproliferative activity reducing in vitro the proportion of murine Colony-Forming Units Granulocyte, Macrophage (CFU-GM) in S-phase and inhibiting the entry into cycle of High Proliferative Potential Colony-Forming Cells (HPP-CFC). This shows that the polar groups of Ser, Asp or Lys are critical for the expression of biological activity, but that the modification of the N- or C-terminus mostly yielded compounds still retaining antiproliferative activity and devoid of toxicity. The efficacy of AcSDKP analogues in preventing in vitro the primitive haematopoietic cells from entering into cycle makes these molecules new candidates for further in vivo investigations.  相似文献   

13.
14.
15.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

16.
17.
The salt extract of the nuclear fraction of a homogenate of the retinal pigment epithelium from 12-15 day old chick embryos inhibits selectively the proliferative activity in the retinal pigment epithelium of 3-5 day old embryos. The inhibiting effect of the nuclear factor is found within 20 h after its introduction into the egg. The nuclear extract from the pigment epithelium does not affect the level of proliferation in retina and lens anterior epithelium.  相似文献   

18.
Murine B lymphocytes, adipocytes, and olfactory neurons contain a DNA-binding protein that participates in the regulation of genes encoding tissue-specific components of signal transduction. Purification and cloning of this protein, termed early B-cell factor (EBF), from murine B lymphocytes and independent cloning of a protein, termed Olf-1, from olfactory neuronal cells revealed virtual complete amino acid sequence identity between these proteins. As a first step towards identifying a human genetic disorder or mouse mutation for which EBF could be a candidate gene, we have chromosomally mapped the corresponding locus in both species. By Southern hybridization analyses of somatic cell hybrid panels with murine cDNA probe, fluorescence chromosomal in situ hybridization (FISH) of human genomic clones, and analysis of recombinant inbred mouse strains, we have found single sites for EBF homologous sequences on human Chromosome (Chr) 5, band q34, and on proximal mouse Chr 11, in an evolutionarily conserved region.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号