首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of human immunodeficiency virus infection in T helper cell clones   总被引:1,自引:0,他引:1  
We present a mathematical model of the activation and proliferation of a clone of T helper cells in response to a replicating antigen. This is able to show types of behaviour akin to persistent infection and to immune memory. This model is expanded to include the infection and destruction of activated T helper cells by human immunodeficiency virus and the growth of a population of circulating human immunodeficiency virus. The resulting model is used to investigate the circumstances under which the human immunodeficiency virus can destabilize persistent infections and destroy immune memory, and to illustrate the impact of antigenic stimulation of infected T helper cell clones upon human immunodeficiency virus replication rates.  相似文献   

2.
3.
Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death.  相似文献   

4.
5.
The specific CD8(+) T-cell response during acute lymphocytic choriomeningitis virus (LCMV) infection of mice is characterized by a rapid proliferation phase, followed by a rapid death phase and long-term memory. In BALB/c mice the immunodominant and subdominant CD8(+) responses are directed against the NP118 and GP283 epitopes. These responses differ mainly in the magnitude of the epitope-specific CD8(+) T-cell expansion. Using mathematical models together with a nonlinear parameter estimation procedure, we estimate the parameters describing the rates of change during the three phases and thereby establish the differences between the responses to the two epitopes. We find that CD8(+) cell proliferation begins 1 to 2 days after infection and occurs at an average rate of 3 day(-1), reaching the maximum population size between days 5 and 6 after immunization. The 10-fold difference in expansion to the NP118 and GP283 epitopes can be accounted for in our model by a 3.5-fold difference in the antigen concentration of these epitopes at which T-cell stimulation is half-maximal. As a consequence of this 3.5-fold difference in the epitope concentration needed for T-cell stimulation, the rates of activation and proliferation of T cells specific for the two epitopes differ during the response and in combination can account for the large difference in the magnitude of the response. After the peak, during the death phase, the population declines at a rate of 0.5 day(-1), i.e., cells have an average life time of 2 days. The model accounts for a memory cell population of 5% of the peak population size by a reversal to memory of 1 to 2% of the activated cells per day during the death phase.  相似文献   

6.
Naive T cells encountering their cognate antigen become activated and acquire the ability to proliferate in response to cytokines. Stat5 is an essential component in this response. We demonstrate that Stat5 cannot access DNA in naive T cells and acquires this ability only after T-cell receptor (TCR) engagement. The transition is not associated with changes in DNA methylation or global histone modification but rather chromatin decondensation. Condensation occurs during thymocyte development and proper condensation is dependent on kleisin-β of the condensin II complex. Our findings suggest that this unique chromatin condensation, which can affect interpretations of chromatin accessibility assays, is required for proper T-cell development and maintenance of the quiescent state. This mechanism ensures that cytokine driven proliferation can only occur in the context of TCR stimulation.  相似文献   

7.
Addition of a mixture of EGF + insulin to quiescent cell cultures synergistically stimulates the cells to reinitiate DNA synthesis and cell division. We have previously demonstrated that this mixture rapidly increases ATP turnover in quiescent cells. The present work shows that each of the two growth factors, EGF and insulin, when added separately to quiescent cells was able to stimulate the phosphorylation of the organic acid-soluble compounds (Po) pool and ATP turnover. The stimulation of ATP turnover was closely correlated with the increase in phosphorylation of the Po pool which suggests that Po labelling reflects the ATP turnover. In many experiments, the synergy between the two growth factors on the early increase in phosphorylation of the Po pool was clearly shown. Doubling the concentration of EGF (12-24 ng/ml) or insulin (50-100 ng/ml) did not increase early stimulation of phosphorylation of the Po pool, whereas simultaneous addition of the two growth factors induced a greater stimulation than that of each growth factor separately added. The augmentation in Po labelling after addition of EGF or insulin alone was transient. The synergistic effect of the two growth factors was more significant when determined 150 or 300 min after growth-factor addition. In our experimental conditions, each of the two growth factors, EGF and insulin, was able to induce a stimulation of DNA synthesis. However, the best stimulatory effect was observed with the mixture of the two which synergistically increased DNA synthesis determined between 6 and 24 h after growth-factor addition. The comparison between DNA replication and Po labelling suggests a correlation between the increase in DNA replication and in the total ATP synthesized in the first 5 h after cell stimulation by growth factors added separately or in combination.  相似文献   

8.
We present an integrated method that uses extended time-lapse automated imaging to quantify the dynamics of cell proliferation. Cell counts are fit with a quiescence-growth model that estimates rates of cell division, entry into quiescence and death. The model is constrained with rates extracted experimentally from the behavior of tracked single cells over time. We visualize the output of the analysis in fractional proliferation graphs, which deconvolve dynamic proliferative responses to perturbations into the relative contributions of dividing, quiescent (nondividing) and dead cells. The method reveals that the response of 'oncogene-addicted' human cancer cells to tyrosine kinase inhibitors is a composite of altered rates of division, death and entry into quiescence, a finding that challenges the notion that such cells simply die in response to oncogene-targeted therapy.  相似文献   

9.
Activation of NKT cells using the glycolipid alpha-galactosylceramide (alpha-GalCer) has availed many investigations into their immunoregulatory and therapeutic potential. However, it remains unclear how they respond to stimulation in vivo, which costimulatory pathways are important, and what factors (e.g., Ag availability and activation-induced cell death) limit their response. We have explored these questions in the context of an in vivo model of NKT cell dynamics spanning activation, population expansion, and subsequent contraction. Neither the B7/CD28 nor the CD40/CD40L costimulatory pathway was necessary for cytokine production by activated NKT cells, either early (2 h) or late (3 days) after initial stimulation, but both pathways were necessary for normal proliferative expansion of NKT cells in vivo. The proapoptotic Bcl-2 family member Bim was necessary for normal contraction of the NKT cell population between days 3-9 after stimulation, suggesting that the pool size is regulated by apoptotic death, similar to that of conventional T cells. Ag availability was not the limiting factor for NKT cell expansion in vivo, and a second alpha-GalCer injection induced a very blunted response, whereby cytokine production was reduced and further expansion did not occur. This appeared to be a form of anergy that was intrinsic to NKT cells and was not associated with inhibitory NK receptor signaling. Furthermore, NKT cells from mice pre-challenged with alpha-GalCer in vivo showed little cytokine production and reduced proliferation in vitro. In summary, this study significantly enhances our understanding of how NKT cells respond to primary and secondary antigenic challenge in vivo.  相似文献   

10.
Although nucleotide analogs like bromodeoxyuridine have been extensively used to estimate cell proliferation in vivo, precise dynamic parameters are scarce essentially because of the lack of adequate mathematical models. Besides recent developments on T cell dynamics, the turnover rates of B lymphocytes are largely unknown particularly in the context of a virally induced pathological disorder. Here, we aim to resolve this issue by determining the rates of cell proliferation and death during the chronic stage of the bovine leukemia virus (BLV) infection, called bovine persistent lymphocytosis (PL). Our methodology is based on direct intravenous injection of bromodeoxyuridine in association with subsequent flow cytometry. By this in vivo approach, we show that the death rate of PL B lymphocytes is significantly reduced (average death rate, 0.057 day(-1) versus 0.156 day(-1) in the asymptomatic controls). Concomitantly, proliferation of the PL cells is also significantly restricted compared to the controls (average proliferation rate, 0.0046 day(-1) versus 0.0085 day(-1)). We conclude that bovine PL is characterized by a decreased cell turnover resulting both from a reduction of cell death and an overall impairment of proliferation. The cell dynamic parameters differ from those measured in sheep, an experimental model for BLV infection. Finally, cells expressing p24 major capsid protein ex vivo were not BrdU positive, suggesting an immune selection against proliferating virus-positive lymphocytes. Based on a comparative leukemia approach, these observations might help to understand cell dynamics during other lymphoproliferative disease such as chronic lymphocytic leukemia or human T-cell lymphotropic virus-induced adult T-cell leukemia in humans.  相似文献   

11.
The transient receptor potential melastatin 8 (TRPM8) is an ion channel that has been widely studied as a cold-sensitive nociceptor. However, its importance in nonneuronal cells is mostly unexplored. Here, we describe the presence and functional significance of endogenous TRPM8, a nonselective Ca2+-channel in T cell functions. The major pool of TRPM8 resides at the T cell surface and its surface accumulation significantly increases in activated T cells. TRPM8 activation synergizes with T-cell receptor (TCR) stimulation to increase CD25, CD69 levels and enhances secretion of proinflammatory cytokine tumor necrosis factor. However, TRPM8 inhibition does not restrict TCR stimulation mediated activation of T cells, indicating that unlike the heat-sensitive TRPV1 and TRPV4 channels, the cold-sensitive TRPM8 channel may be dispensable during T-cell activation, at least in mice. In this study, we demonstrate that TRPM8 promotes TCR-induced intracellular calcium increase. TRPM8 activation is beneficial for T-cell activation and differentiation into effector cells. TRPM8 inhibition during the T-cell activation process may lead to altered phenotype and reduced proliferation, without affecting cell viability. These results collectively establish TRPM8 as a functional calcium channel whose activation may be utilized for mounting an effective immune response. The findings of this study will be relevant to the regulation and response of T cells during cell-mediated immunity. These results will likely further our understanding on the role of ion channels in T-cell activation.  相似文献   

12.
Expression of annexins as a function of cellular growth state   总被引:8,自引:1,他引:7       下载免费PDF全文
Annexins are a structurally related family of Ca2+ binding proteins of undertermined biological function. Annexin I (also called lipocortin 1) is a substrate for the EGF-stimulated tyrosine kinase and is postulated to be involved in mitogenic signal transduction. To investigate further the involvement of lipocortin 1 in cell proliferation, we measured lipocortin 1 levels in normal diploid human foreskin fibroblasts (HFF) to determine whether its expression changed as a function of growth status. For comparison, the expression of annexin V (also called endonexin II) was measured in HFF cells. Endonexin II is a protein with similar Ca2+ and phospholipid binding properties as lipocortin 1, but it is not a substrate for tyrosine kinases. Quiescent HFF cell cultures were induced to proliferate by either subculture to lower cell density, EGF stimulation, or serum stimulation. In all three protocols, proliferating HFF cells contained three- to fourfold higher levels of lipocortin 1 and three- to fourfold lower levels of endonexin II than quiescent HFF cells. In contrast, the expression of annexin II (also called calpactin I) and annexin IV (also called endonexin I) remained relatively unchanged in growing and quiescent HFF cells. Lipocortin 1 synthesis rate was eightfold higher and its turnover rate was 1.5-fold slower in proliferating compared to quiescent HFF cells. Endonexin II synthesis rate remained constant but its turnover rate was 2.2-fold faster in proliferating compared to quiescent HFF cells. In a separate set of experiments, annexin expression levels were measured in cultures of rat PC-12 cells, a pheochromocytoma that ceases proliferation and undergoes reversible differentiation into nondividing neuronlike cells in response to nerve growth factor (NGF). After NGF treatment, PC-12 cells expressed fivefold higher levels of endonexin II and 32-fold higher levels of calpactin 1. Lipocortin 1 and endonexin I were not expressed in PC-12 cells. In summary, lipocortin 1 expression exhibited a positive correlation with cell proliferation in HFF cells. The increased expression of endonexin II in quiescent HFF cells and differentiating PC-12 cells implies that this protein may play a more prominent role in nondividing cells.  相似文献   

13.
The turnover of phospholipids was investigated in quiescent serum-starved Chinese-hamster ovary (CHO-K1) cells stimulated to progress through the cell cycle by the addition of dialysed bovine serum. A variety of radiolabelling techniques were employed to study the rapid effects of serum on phospholipids and later events during G1 and S phases of the cell cycle. Pulse-labelling studies using [32P]Pi revealed that there was a stimulation of the synthesis rate of all phospholipids investigated during the initial few hours after serum addition. The greatest stimulation (20-fold) was observed in phosphatidylcholine, and the smallest in the polyphosphoinositides (PPIs). Mock stimulation with serum-free medium caused a similar increase in PPI turnover, but little or no effect on turnover of other phospholipids. This effect could be accounted for by a stimulation of the turnover of cellular ATP pools increasing [32P]ATP specific radioactivity. Late G1 and S phases were associated with a decrease in the rate of synthesis of all phospholipids. Phosphatidic acid was the only phospholipid whose labelling fell below that in mock-stimulated cells during the period of the cell cycle. Stimulation of serum-starved cells that had been prelabelled with myo-[2-3H]inositol caused no change in the amounts of inositol trisphosphate, but both serum-stimulated and mock-stimulated cells exhibited similar small decreases in both inositol bisphosphate and inositol monophosphate, of approx. 30% after 30 s. When cells were serum-stimulated in the presence of 10 mM-Li+, there was no increase in the size of the total inositol phosphate pool. We conclude that mitogenic stimulation and cell-cycle traverse cause profound and complex effects on phospholipid turnover in CHO-K1 cells, but there is no evidence for a role of inositol lipid turnover in the proliferative response to serum in this cell line.  相似文献   

14.
Reproducible conditions were defined for using rates of leucine incorporation as a valid measure of rates of de novo protein synthesis in mouse 3T3 cells. Upon stimulation of quiescent cultures, rates of de novo synthesis of proteins increased and pool levels of amino acids decreased in proportion to the concentration of serum in the stimulating medium. Rates of de novo protein synthesis (per cell) exhibited a biphasic pattern of increase. These rates approached a plateau value at the end of the lag phase and increased again as cells entered S phase. This pattern of behaviour helps to explain the observed relationships between cell growth (increase in mass) and cell proliferation (increase in cell number).  相似文献   

15.
Productive infection of human T lymphocytes by HIV-1 is dependent upon proliferation of the infected cell. Nonproliferating quiescent T cells can be infected by HIV-1 and harbor the virus in an inactive state until subsequent mitogenic stimulation. We use a modification of the polymerase chain reaction method, which is both sensitive and quantitative, to demonstrate that HIV-1 DNA synthesis is initiated in infected quiescent T cells at levels comparable with those of activated T cells. However, unlike that of activated T cells, the viral genome is not completely reverse transcribed in quiescent cells. Although this viral DNA structure can persist in quiescent cells as a latent form, it is labile. We discuss the lability of this HIV-1 DNA structure in relation to a "self-restricting persistent infection" by HIV-1 and propose that this may explain the low percentage of infected cells in the circulation of AIDS patients.  相似文献   

16.
Upon antigenic stimulation, CD1d-restricted NKT cells quickly secrete large amounts of cytokines. This prompt response demonstrates that CD1d-restricted NKT cells may potentially prove to be useful therapeutic agents for the treatment of many diseases. Despite the clinical importance of CD1d-restricted NKT cells, the regulating mechanisms of this unique T cell population remain to be defined. We found murine LAG-3 is inducible on CD1d-restricted NKT cells as the result of a variety of stimulants such as concanavalin A (con A) and anti-CD3. Also, antigen-specific CD1d stimulation can elicit LAG-3 in CD1d-restricted NKT cells. Moreover, ectopic LAG-3 expression on CD1d-restricted NKT cells results in cell cycle arrest in the S phase. These results show that LAG-3 signaling on activated CD1d-restricted NKT cells may down-modulate NKT cell proliferation.  相似文献   

17.
We analyse the effect of the regulatory T cells (Tregs) in the local control of the immune responses by T cells. We obtain an explicit formula for the level of antigenic stimulation of T cells as a function of the concentration of T cells and the parameters of the model. The relation between the concentration of the T cells and the antigenic stimulation of T cells is an hysteresis, that is unfold for some parameter values. We study the appearance of autoimmunity from cross-reactivity between a pathogen and a self antigen or from bystander proliferation. We also study an asymmetry in the death rates. With this asymmetry we show that the antigenic stimulation of the Tregs is able to control locally the population size of Tregs. Other effects of this asymmetry are a faster immune response and an improvement in the simulations of the bystander proliferation. The rate of variation of the levels of antigenic stimulation determines if the outcome is an immune response or if Tregs are able to maintain control due to the presence of a transcritical bifurcation for some tuning between the antigenic stimuli of T cells and Tregs. This behavior is explained by the presence of a transcritical bifurcation.  相似文献   

18.
A two-compartment model of cancer cells population dynamics proposed by Gyllenberg and Webb includes transition rates between proliferating and quiescent cells as non-specified functions of the total population, N. We define the net inter-compartmental transition rate function: Phi(N). We assume that the total cell population follows the Gompertz growth model, as it is most often empirically found and derive Phi(N). The Gyllenberg-Webb transition functions are shown to be characteristically related through Phi(N). Effectively, this leads to a hybrid model for which we find the explicit analytical solutions for proliferating and quiescent cell populations, and the relations among model parameters. Several classes of solutions are examined. Our model predicts that the number of proliferating cells may increase along with the total number of cells, but the proliferating fraction appears to be a continuously decreasing function. The net transition rate of cells is shown to retain direction from the proliferating into the quiescent compartment. The death rate parameter for quiescent cell population is shown to be a factor in determining the proliferation level for a particular Gompertz growth curve.  相似文献   

19.
Activation-induced cell death is a general mechanism of immune homeostasis through negative regulation of clonal expansion of activated immune cells. This mechanism is involved in the maintenance of self- and transplant tolerance through polarization of the immune responses. The Fas/Fas-ligand interaction is a major common executioner of apoptosis in lymphocytes, with a dual role in regulatory T cell (Treg) function: Treg cell homeostasis and Treg cell-mediated suppression. Sensitivity to apoptosis and the patterns of Treg-cell death are of outmost importance in immune homeostasis that affects the equilibrium between cytolytic and suppressor forces in activation and termination of immune activity. Naive innate (naturally occurring) Treg cells present variable sensitivities to apoptosis, related to their turnover rates in tissue under steady state conditions. Following activation, Treg cells are less sensitive to apoptosis than cytotoxic effector subsets. Their susceptibility to apoptosis is influenced by cytokines within the inflammatory environment (primarily interleukin-2), the mode of antigenic stimulation and the proliferation rates. Here, we attempt to resolve some controversies surrounding the sensitivity of Treg cells to apoptosis under various experimental conditions, to delineate the function of cell death in regulation of immunity.  相似文献   

20.
Growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I) are required for quiescent 3T3 cells to proliferate, but zinc deprivation impairs IGF-I-induced DNA synthesis. We recently showed that labile intracellular pool of zinc is involved in cell proliferation. Our objective was to determine whether the labile intracellular pool of zinc plays a role in growth factor (PDGF, EGF, and IGF-I)-stimulated proliferation of 3T3 cells. Quiescent 3T3 cells were cultured in DMEM with or without growth factors. Labile intracellular pool of zinc, DNA synthesis, and cell proliferation were assessed using fluorescence microscopy, 3H-thymidine incorporation, and total cell number counts, respectively. After 24 h, growth factors stimulated DNA synthesis (24%) but not cell proliferation. After 48 h, growth factors stimulated both DNA synthesis (37%) and cell proliferation (89%). In response to growth factor stimulation, the labile intracellular pool of zinc was also elevated after 24 or 48 h of treatment. In summary, growth factor (PDGF, EGF, and IGF-I)-stimulated increase in DNA synthesis and cell proliferation were accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Since elevation of the labile intracellular pool of zinc occurred along with increased DNA synthesis, but cell proliferation remained unchanged, the elevation of the labile intracellular pool of zinc likely occurred during the S phase to provide the zinc needed to support DNA synthesis and ultimately cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号