首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.  相似文献   

14.
15.
16.
Summary: We describe the generation of transgenic mouse lines expressing the Cre recombinase enzyme in brain under control of the CamKIIα gene present in a BAC expression vector. The CamKIIα BAC transgene gave a faithful expression pattern resembling the pattern of the endogenous CamKIIα gene. Specifically, high levels of CamKIIα Cre were detected in hippocampus, cortex, and amygdala, and lower levels were detected in striatum, thalamus, and hypothalamus. As expected, no expression was detected in the cerebellum or outside of the brain. The expression level of the BAC CamKIIα driven Cre was shown to be copy number dependent. To test the activity of the Cre recombinase, the transgenic mice were crossed with mice harbouring the CREB (cAMP response element binding protein) allele with the 10th exon flanked by two loxP sites, and recombination was monitored by the disappearance of the CREB protein. Finally, evaluation of the developmental postnatal expression of the CamKIIα Cre BAC revealed the expression of the Cre recombinase as early as P3. genesis 31:37–42, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号