首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of mutations in disease genes will be a significant application of genomic research. Methods for detecting mutations at the single nucleotide level are required in highly mutated genes such as the tumor suppressor p53. Resequencing of an individual patient's DNA by conventional Sanger methods is impractical, calling for novel methods for sequence analysis. Toward this end, an arrayed primer extension (APEX) method for identifying sequence alterations in primary DNA structure was developed. A two-dimensional array of immobilized primers (DNA chip) was fabricated to scan p53 exon 7 by single bases. Primers were immobilized with 200 microm spacing on a glass support. Oligonucleotide templates of length 72 were used to study individual APEX resequencing reactions. A template-dependent DNA polymerase extension was performed on the chip using fluorescein-labeled dideoxynucleotides (ddNTPs). Labeled primers were evanescently excited and the induced fluorescence was imaged by CCD. The average signal-to-noise ratio (S/N) observed was 30:1. Software was developed to analyze high-density DNA chips for sequence alterations. Deletion, insertion, and substitution mutations were detected. APEX can be used to scan for any mutation (up to two-base insertions) in a known region of DNA by fabricating a DNA chip comprising complementary primers addressing each nucleotide in the wild-type sequence. Since APEX is a parallel method for determining DNA sequence, the time required to assay a region is independent of its length. APEX has a high level of accuracy, is sequence-based, and can be miniaturized to analyze a large DNA region with minimal reagents.  相似文献   

2.
SUMMARY: Multi-dimensional Automated Clustering Genotyping Tool (MACGT) is a Java application that clusters complex multi-dimensional vector data derived from single nucleotide polymorphism (SNP) genotyping experiments using mini-sequencing based microarray chemistries such as arrayed primer extension (APEX). Spot intensity output files from microarray experiments across multiple samples are imported into MACGT. The datasets can include four channels of intensity data for each spot, replica spots for each SNP probe and multiple probe types (APEX and allele-specific APEX probes) on both DNA strands for each SNP. MACGT automatically clusters these multi-dimensionality datasets for each SNP across multiple samples. Incorporation of additional array datasets from known samples that have previously validated SNP genotype calls allows unknown samples to be automatically assigned a genotype based on the clustering, along with numerical measures of confidence for each genotype call. Calling accuracy by MACGT exceeds 98% when applied to genotyping data from APEX microarrays, and can be increased to >99.5% by applying thresholds to the confidence measures.  相似文献   

3.
We have developed a method for parallel independent on-chip amplification and the following sequence variation analysis of multiple DNA regions directly using microchip with an array of nanoliter gel pads containing specific sets of tethered primers. The method has three key features. First, DNA to be amplified is enriched at gel pads by its hybridization with immobilized primers. Second, different sets of specific primers are immobilized within various gel pads, and primers are detached within gel pads just before polymerase chain reaction to enhance the amplification. A gel pad may contain an additional permanently immobilized dormant primer that is activated to carry out the allele-specific primer extension reaction to detect mutations. Third, multiple polymerase chain reactions are confined within nanoliter gel pads covered and separated from each other with mineral oil. The method was applied to simultaneously identify several abundant drug-resistant mutations in three genes of Mycobacterium tuberculosis.  相似文献   

4.
Mutations in the tumor suppressor gene TP53 are associated with a wide range of different cancers and may have prognostic and therapeutic implications. Methods for rapid and sensitive detection of mutations in this gene are therefore required. In order to make screening more effective, a commercially available TP53 genotyping microarray from Asper Biotech has been constructed by arrayed primer extension (APEX). The present study is the first report that blindly evaluates the efficiency of the second generation APEX TP53 genotype chip outside the Asper laboratory and compares it to temporal temperature gradient electrophoresis (TTGE) and sequencing of TP53 for mutation detection in ovarian and breast cancer samples. All nucleotides in the TP53 gene from exon 2-9 are included on the chip by synthesis and application of sequence-specific oligonucleotides. The chip was validated by screening 48 breast and 11 ovarian cancer cases, all of which had previously been analyzed by TTGE and sequencing. APEX scored 17 of 20 sequence variants, missing one deletion, one insertion, and a missense mutation. Resequencing efficiency using APEX was 92% for both DNA strands and 99.5% for sense and/or antisense strand. We conclude that the APEX TP53 microarray is a robust, rapid, and comprehensive screening tool for sequence alterations in tumors.  相似文献   

5.
Lu Y  Kham SK  Tan PL  Quah TC  Heng CK  Yeoh AE 《Genetic testing》2005,9(3):212-219
Mutation screenings, which were conventionally carried out individually because of different assay conditions, are usually time consuming and not cost effective. Using microarray technology, simultaneous molecular diagnosis of multiple mutations on a single platform is possible. To evaluate this idea, we developed a DNA chip platform to simultaneously detect 23 mutations of the beta-globin gene and 9 mutations of thiopurine methyltransferase (TPMT) gene based on the principle of arrayed primer extension (APEX). A blinded test consisting of 200 DNA samples with known genotypes was performed to validate this strategy. High genotyping accuracy of 97.3% and 100% for beta-globin and TPMT genes, respectively, were achieved. Further analysis on the fluorescent intensity demonstrated clear separation between the real signal and the background noise, which enabled us to set two cutoff values (V(lower) = 4.0 and V(upper) = 12.0) to determine the genotype quantitatively. Our results showed that APEX is a highly reliable genotyping strategy to detect mutations that cause beta-thalassemia or TPMT enzyme deficiency.  相似文献   

6.
Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems.  相似文献   

7.
The aim of this study was to investigate the feasibility of combining PCR and ligase detection reaction (LDR) with a novel nano-gold-based universal array for the detection of low abundance point mutations from fetal DNA in maternal plasma samples. The sequence with the target point mutation was first amplified by PCR and then used as a template for LDR in which the upstream specific primer contains a tag sequence at the 5′-end. After hybridization to the probes of a universal array containing anti-tag sequences, the ligated products were bound to streptavidin-labeled nano-gold particles and the hybridization signals were amplified by silver staining. The PCR/LDR/universal array was first tested for sensitivity with nano-gold-based detection, and then this system was applied to detect the low abundance specific mutation IVS2 654(C→T) of the β-globin gene in a model using maternal plasma samples. The nano-gold-based method unambiguously identified a single mutation at a sensitivity of 1:1000. This approach was applied to detect the paternally inherited IVS2 654(C→T) mutation from thirty maternal plasma samples. The results were consistent with those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. The PCR/LDR/nano-gold-based universal array is able to detect low-abundance point mutations with high sensitivity.  相似文献   

8.

Background

Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked.

Methods

To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants.

Results

The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified.

Conclusions

In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance.  相似文献   

9.
A sensitive and highly reproducible multiplexed primer extension assay is described for quantitative mutation analysis of heterogeneous DNA populations. Wild-type and mutant target DNA are simultaneously probed in competitive primer extension reactions using fluorophor-labeled primers and high fidelity, thermostable DNA polymerases in the presence of defined mixtures of deoxy- and dideoxynucleotides. Primers are differentially extended and the resulting products are distinguished by size and dye label. Wild-type:mutant DNA ratios are determined from the fluorescence intensities associated with electrophoretically resolved reaction products. Multiple nucleotide sites can be simultaneously interrogated with uniquely labeled primers of different lengths. The application of this quantitative technique is shown in the analysis of heteroplasmic point mutations in mitochondrial DNA that are associated with Alzheimer's disease.  相似文献   

10.
We describe a new technique by which single base changes in human genes can be conveniently detected. In this method the DNA fragment of interest is first amplified using the polymerase chain reaction with an oligonucleotide primer biotinylated at its 5'-end. The amplified 5'-biotinylated DNA is immobilized on an avidin matrix and rendered single-stranded. The variable nucleotide in the immobilized DNA is identified by a one-step primer extension reaction directed by a detection step primer, which anneals to the DNA immediately upstream of the site of variation. In this reaction a single labeled nucleoside triphosphate complementary to the nucleotide at the variable site is incorporated. The method is highly sensitive, allowing the use of nucleoside triphosphates labeled with radioisotopes of low specific activity (3H) as well as nonradioactive markers (digoxigenin). The procedure consists of few and simple operations and is thus applicable to the analysis of large numbers of samples. Here we applied it to the analysis of the three-allelic polymorphism of the human apolipoprotein E gene. We were able to correctly identify all possible combinations of the three apo E alleles.  相似文献   

11.
We describe here ligation-based strategy to detect mutations in BRCA1 utilizing zip-code microarray technology. In our first approach, PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then used as templates in a subsequent ligation reaction using two ligation primers that flanked the mutation site. The primary allele-specific primer is designed to contain a base of mutation site at its 3′ end with 5′ complementarity to the respective zip-code sequence while the secondary common primer is modified by biotin at its 3′ end. Depending on the genotype of samples at the mutation site, the nick between the two ligation primers can be sealed in the presence of DNA ligase. The ligation products were then hybridized on the zip-code microarray followed by staining with streptavidine-cy3 to generate a fluorescent signal. Using this strategy we successfully genotyped selected Korean-specific mutation sites in exon 11 of BRCA1 with a wild type and two heterozygote mutant samples. Furthermore, we also demonstrated that ligase chain reaction using unamplified genomic DNA as direct templates is enough to generate sufficient signals for correct genotypings in a multiplexed manner, verifying first that PCR is not essential for this microarray-based strategy.  相似文献   

12.
This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5 pM, signal/noise > 3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.  相似文献   

13.
A simple approach is described to synthesize and clone an inexhaustible supply of any homozygous and/or heterozygous controls diluted with yeast genomic DNA to mimic human genome equivalents for use throughout the entire multiplex mutation assay. As a proof of principle, the 25 cystic fibrosis mutation panel selected by the American College of Medical Genetics and four additional mutant sequences were prepared as a single control mixture. The 29 CFTR mutations were incorporated into 17 gene fragments by PCR amplification of targeted sequences using mutagenic primers on normal human genomic DNA template. Flanking primers selected to bind beyond all published PCR primer sites amplified controls for most assay platforms. The 17 synthesized 433-933-bp CFTR fragments each with one to four homozygous mutant sequences were cloned into nine plasmid vectors at the multiple cloning site and bidirectionally sequenced. Miniplasmid preps from these nine clones were mixed and diluted with genomic yeast DNA to mimic the final nucleotide molar ratio of two CFTR genes in 6 x 10(9) bp total human genomic DNA. This mixture was added to control PCR reactions prior to amplification as the only positive control sample. In this fashion >200 multiplex clinical PCR analyses of >4,000 clinical patient samples have been controlled simultaneously for PCR amplification and substrate specificity for 29 tested mutations without cross contamination. This clinically validated multiplex cystic fibrosis control can be modified readily for different test formats and provides a robust means to control for all mutations instead of rotating human genomic controls each with a fraction of the mutations. This approach allows scores of additional mutation controls from any gene loci to be added to the same mixture annually.  相似文献   

14.
The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3''-5'' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3''-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach.  相似文献   

15.
Arrays of oligonucleotides synthesized in the 5'-->3' direction have potential benefit in several areas of life sciences research because the free 3'-end can be modified by enzymatic reactions. A Geniom One instrument (febit biomed GmbH, Germany), with integrated chip fabrication, multiplex primer extension, fluorescence imaging, and data analysis, was evaluated for studies of genomic variations. Microchannels used for the array synthesis in Geniom One were not optimized before for the APEX method and, as preliminary experiments demonstrated in this study, the signals were strongly affected by the speed of the process inside reaction channels. Using the two-compartment model (TCM), target binding to feature were quantitatively analyzed, revealing profound mass-transport limitations in the observed kinetics and enabling us to draw a series of physicochemical conclusions of the optimal set-up for the APEX reaction. Some kinetically relevant parameters such as target concentration, reaction time, and temperature were comprehensively analyzed. Finally, we applied the arrays and methods in a proof-of-principle experiment where 36 individuals were typed with 900 oligonucleotide probes (sense and antisense primers for 450 markers), using the ABCR gene as a test system. A new DNA analysis method for studies of genomic variation was developed using this all-in-one platform.  相似文献   

16.
A new method was developed for the detection of single-base mutations in DNA. The polymerase chain reaction was used to prepare DNA fragments of up to 1 kb. Fragments that differed by a single-base were combined, denatured and renatured to generate heteroduplexes. The heteroduplexes were reacted with a water-soluble carbodiimide under conditions in which the carbodiimide modified Gs and Ts that were not base paired. The DNA was then used as a template for primer extension with Taq DNA polymerase under conditions in which extension terminated at the site of the carbodiimide-modified base and generated a 32P-labeled fragment that was identified by polyacrylamide gel electrophoresis as a fragment smaller than the full length product. The procedure detected all four general classes of single-base mutations in several different sequence contexts. The site of the mutation was located to within about 15 bp. Extension with both a 5'- and a 3'-primer made it possible to confirm the site of the mutation in most DNA samples or detect a mutation in heteroduplexes even if a G or T in one strand was unreactive because of its sequence context. The procedure appears to have several advantages over previously published techniques.  相似文献   

17.
DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by. the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2'-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5'-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

18.
We describe the development and implementation of a neurofibromatosis type 2 (NF2) mutation scanning service based on novel techniques. All 17 exons of the NF2 gene are amplified in four polymerase chain reaction (PCR) reactions, using the meta-PCR technique to link the NF2 exons into chimeric concatamers. The meta-PCR products are then scanned for point mutations by direct sequencing. A four-exon dosage assay is used to test for large deletion/duplication mutations. In certain cases when tumour studies are necessary, these techniques are also combined with loss of heterozygosity analysis with three highly polymorphic microsatellite markers located within or close to the NF2 gene. Over a period of 2 years, we have applied these techniques in a service setting to the analysis of 271 patient samples (245 lymphocyte DNA; 26 schwannoma DNA). Meta-PCR and sequencing identified 90 point mutations in the 271 blood and tumor samples, 48 of which have not been reported previously. Dosage analysis identified large deletions in 12 of the lymphocyte DNA samples. In addition, over 84% of mutations were identified in 23 schwannoma DNA samples in which complete analysis was possible. Adoption of this novel strategy has increased the overall mutation detection rate in familial NF2 cases to 88% and sporadic NF2 cases to 59%. It has also allowed us to decrease our reporting turnaround times, and because of a low overall failure rate, permitted the running of an efficient and cost-effective service.  相似文献   

19.
20.

DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2′-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5′-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号