首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-Sm (Sm: U1-U6 RNA-protein complex) antibodies are usually considered highly specific for systemic lupus erythematosus (SLE), while anti-U1RNP (U1RNP: U1RNA-protein complex) are thought of as diagnostic criteria for the mixed connective tissue disease (MCTD). However, both antibody specificities coexist in SLE and MCTD, in varying percentages. Although the anti-Sm/anti-U1RNP immunological cross-reactivity has been initially attributed to a common motif, PPXY(Z)PP (where X, Y, Z are various amino acids), found in the Sm, U1-A and U1-C autoantigens, it appears that the conformational features of the Sm epitopes also play an important role in the immunoreactivity. The PPGMRPP and PPGIRGP main epitopes of the Sm antigen were coupled in duplicate to the tetrameric Ac-(Lys-Aib-Gly)4-OH, SOC4, carrier to form the [(PPGMRPP)2, (PPGIRGP)2]-SOC4 construct as a mimic of the native Sm. It was found that: (i) the 3(10) helical structure of SOC4 allows the epitopes to adopt an exposed orientation, similar to their free forms, that facilitates their recognition from the anti-Sm antibodies, and (ii) the U1-RNP cross-reactivity is minimized.  相似文献   

2.
Summary The PPGMRPP sequence, found in several copies in the Sm and U1RNP autoantigens, is the main target of anti-Sm and anti-U1RNP antibodies in systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) patient's sera. It is also recognized, to a lower extent, by anti-Ro/SSA and anti-La/SSB specificities. The PPGMRPP-NH2 peptide amide and the PPGMRPP peptide, which is bound to a pentameric sequential oligopeptide carrier (SOC5), were examined by1H-NMR spectroscopy and ELISA assays, using sera from patients with autimmune rheumatic diseases. Among the three main conformers found for the free PPGMRPP, the extended one was also identified for PPGMRPP-NH2 and (PPGMRPP)5-SOC5. This can be attributed to the absence of ionic interactions between the Arg-guanidinium and the carboxylate group in the amide and SOC5-bound forms of the peptide. Immunoassays using sera from various specificities showed an enhanced anti-Sm and anti-U1RNP recognition of PPGMRPP-NH2 and (PPGMRPP)5-SOC5, and lowering of the anti-Ro/SSA and anti-La/SSB reactivity. The presence of multiple conformers of free PPGMRPP may explain the unexpected cross-reactivity to the anti-Ro/La positive sera, while the prevalence of the extended conformation in PPGMRPP-NH2 and (PPGMRPP)5-SOC5 is mainly responsible for the enhanced recognition from the anti-Sm and anti-U1RNP autoantibodies. it is concluded that the antigenic specificity of PPGMRPP-NH2 and (PPGMRPP)5-SOC5 is mainly induced by conformational changes resulting from the conversion of the C-terminal carboxylate group to the amide form.  相似文献   

3.
The PPGMRPP sequence, found in several copies in the Sm and U1RNPautoantigens, is the main target of anti-Sm and anti-U1RNP antibodies insystemic lupus erythematosus (SLE) and mixed connective tissue disease(MCTD) patient's sera. It is also recognized, to a lower extent, byanti-Ro/SSA and anti-La/SSB specificities. The PPGMRPP-NH2peptide amide and the PPGMRPP peptide, which is bound to a pentamericsequential oligopeptide carrier (SOC5), were examined by1H-NMR spectroscopy and ELISA assays, using sera from patientswith autoimmune rheumatic diseases. Among the three main conformers foundfor the free PPGMRPP, the extended one was also identified for PPGMRPP-NH2 and (PPGMRPP)5-SOC5.This can be attributed to the absence of ionic interactions between theArg-guanidinium and the carboxylate group in the amide andSOC5-bound forms of the peptide. Immunoassays using sera fromvarious specificities showed an enhanced anti-Sm and anti-U1RNP recognitionof PPGMRPP-NH2 and(PPGMRPP)5-SOC5, and lowering of the anti-Ro/SSAand anti-La/SSB reactivity. The presence of multiple conformers of freePPGMRPP may explain the unexpected cross-reactivity to the anti-Ro/Lapositive sera, while the prevalence of the extended conformation inPPGMRPP-NH2 and (PPGMRPP)5-SOC5is mainly responsible for the enhanced recognition from the anti-Sm andanti-U1RNP autoantibodies. It is concluded that the antigenic specificity ofPPGMRPP-NH2 and (PPGMRPP)5-SOC5 ismainly induced by conformational changes resulting from the conversion ofthe C-terminal carboxylate group to the amide form.  相似文献   

4.
An innovative type of multifunctional helicoid artificial carriers, formed by the repetitive Lys-Aib-Gly (SOC(n)-I) or by the Aib-Lys-Aib-Gly (SOC(n)-II), with structural rigidity and regularity were successfully applied in our laboratory for anchoring antigenic/immunogenic peptides. The carriers, designed to display a predetermined 3D structure, adopt the 3(10) helical conformation, while the attached peptides preserve their original "active" conformation. The constructed conjugates were used as substrates in solid phase immunoassays, as well as for generating potent and specific immune responses.  相似文献   

5.
Myelopeptides, MP-6 (Val-Asp-Pro-Pro) and MP-4 (Phe-Arg-Pro-Arg-Ile-Met-Thr-Pro), induce metabolic changes in human leukemia cells, HL-60, characteristic of the differentiation process, which should be regarded as a promising therapeutic approach in cancer and related diseases. With the aim to optimize the differentiation effect of MPs, they were coupled to the Lys-N(epsilon)H(2) groups of a sequential oligopeptide carrier Ac-(Lys-Aib-Gly)(4), SOC(4), and the constructs obtained were studied. The rigid 3(10) secondary structure of the carrier is preserved even after linkage of the MPs, which also maintain their initial conformations without interacting either with each other or with the carrier, as demonstrated by (1)H nuclear magnetic resonance (NMR) spectroscopy. It is concluded that the carrier accommodates the presentation of MPs, thus improving their differentiation effect on human leukemia cells.  相似文献   

6.
A new peptide carrier with three-dimensional predetermined structural motif has been constructed by the repetitive Lys-Aib-Gly moiety. The sequential oligopeptide carrier (SOC(n)), (Lys-Aib-Gly)(n), adopts a distorted 3(10)-helical conformation and the Lys-N(epsilon)H(2) anchoring groups exhibit defined spatial orientations. Conformational analysis of the SOC(n) conjugates showed that the coupled peptides retain their initial "active" structure, while prevalence of one conformer was also observed. It is concluded that the beneficial structural elements of SOC(n) induce a favorable arrangement of the conjugated peptides, so that potent antigens and immunogens are generated.  相似文献   

7.
Autoantibodies to ribonucleoprotein particles containing U2 small nuclear RNA.   总被引:29,自引:3,他引:26  
Autoantibodies exclusively precipitating U1 and U2 small nuclear ribonucleoprotein (snRNP) particles [anti-(U1,U2)RNP] were detected in sera from four patients with autoimmune disorders. When tested by immunoblotting, these sera recognized up to four different protein antigens in purified mixtures of U1-U6 RNP particles. With purified antibody fractions eluted from individual antigen bands on nitrocellulose blots, each anti-(U1,U2)RNP serum precipitated U2 RNP by virtue of the recognition of a U2 RNP-specific B" antigen (mol. wt. 28 500). Antibodies to the U2 RNP-specific A' protein (mol. wt. 31 000) were found in only one serum. The B" antigen differs slightly in mol. wt. from the U1-U6 RNA-associated B/B' antigens and can be separated from this doublet by two-dimensional gel electrophoresis, due to its more acidic pI. In immunoprecipitation assays, the purified anti-B" antibody specificity also reacts with U1 RNPs which is due to cross-reactivity of the antibody with the U1 RNA-specific A protein, as demonstrated by immunoblotting using proteins from isolated U1 RNPs as antigenic material. Thus the A antigen not only bears unique antigenic sites for anti-A antibodies contained in anti-(U1)RNP sera, it also shares epitopes with the U2 RNP-specific B" antigen.  相似文献   

8.
Autoantibodies directed against the U2 small nuclear ribonucleoprotein (snRNP) have been found in the serum of a patient with scleroderma-polymyositis overlap syndrome. This specificity, called anti-(U2)-RNP, is distinct from all previously described autoantibodies, including those that precipitate related snRNPs: anti-Sm antibodies, which react with the entire set of U1, U2, U4, U5, and U6 snRNPs, and anti-(U1)RNP antibodies, which recognize only U1 snRNPs. From HeLa cell extracts, anti-(U2)RNP immunoprecipitates predominantly one 32P-labeled RNA species, identified as U2 small nuclear RNA, and six [35S]methionine-labeled protein bands, A' (Mr = 32,000), B (Mr = 28,000), D (Mr = 16,000), E (Mr = 13,000), F (Mr = 12,000), and G (Mr = 11,000). Protein blot analysis reveals that the A' protein carries (U2)RNP antigenic determinant(s) and therefore represents a polypeptide unique to the U2 snRNP; the B protein associated with U2 snRNPs may also be unique. Like U1 and the other Sm snRNPs, U2 snRNPs occupy a nuclear, non-nucleolar location and are antigenically conserved from insects to man. An antibody specific for the U2 snRNP will be useful in deciphering the function of this particle.  相似文献   

9.
The Sm small nuclear ribonucleoproteins (snRNPs) from mammalian cells have been characterized as containing U1, U2, U4, U5, and U6 RNA associated with some subset of at least 10 distinct polypeptides (called 68K, A, A', B, B', C, D, E, F, and G) that range in molecular weight from 68,000 to 11,000. Whereas this entire collection of snRNP particles is precipitated by patient anti-Sm autoantibodies, anti-(U1)RNP autoantibodies specifically recognize U1 snRNPs. Here, we have performed immunoblots using the sera from 29 patients and a mouse anti-Sm monoclonal antibody to identify which HeLa cell snRNP proteins carry anti-Sm or anti-(U1)RNP antigenic determinants. Strikingly, every serum surveyed, as well as the monoclonal antibody, recognizes determinants on two or more snRNP protein components. The three proteins, 68K, A, and C, that uniquely fractionate with U1 snRNPs are specifically reactive with anti-(U1)RNP sera in blots. Anti-Sm patient sera and the mouse monoclonal antibody react with proteins B, B', D, and sometimes E, one or more of which must be present on all Sm snRNPs. The blot results combined with data obtained from a refined 32P-labeled RNA immunoprecipitation assay reveal that, in our collection of the sera from 29 patients, anti-Sm rarely exists in the absence of equal or higher titers of anti-(U1)RNP; moreover, (U1)RNP sera often contain detectable levels of anti-Sm. Our findings further define the protein composition of the Sm snRNPs and raise intriguing questions concerning the relatedness of snRNP polypeptides and the mechanism of autoantibody induction.  相似文献   

10.
High titer IgG autoantibodies to the 70-kDa polypeptide component (p70) of the U1 ribonucleoprotein (RNP) complex occur in the sera of patients with mixed connective tissue disease, SLE, and related rheumatic diseases. To gain insight into the pathogenesis and diversity of this antibody response we have used recombinant DNA technology to map the linear B cell epitopes on p70. A full length 1.7-kb cDNA clone encoding p70 was isolated from a human placental library and restriction fragments or polymerase chain reaction-generated fragments of the gene subcloned into the bacterial expression vector pGEX. Purified fusion proteins representing specific regions of p70 were immunoblotted with a panel of 70 anti-(U1)RNP+ sera containing anti-p70 antibodies. Six epitopes, four major (A, B, C, and F) and two minor (D and E) were mapped and were located throughout the molecule. The anti-(U1)RNP sera displayed heterogeneity in their pattern of reactivity to the six epitopes although reactivity to epitope C was more frequently associated with SLE rather than mixed connective tissue disease. The identification of multiple B cell epitopes on p70 is consistent with the concept that this self Ag drives the autoantibody response.  相似文献   

11.
One possible therapeutic approach to treat or prevent Alzheimer's disease (AD) is immunotherapy. On the basis of the identification of Abeta(4-10) (FRHDSGY) as the predominant B-cell epitope recognized by therapeutically active antisera from transgenic AD mice, conjugates with defined structures containing the epitope peptide attached to a tetratuftsin derivative as an oligopeptide carrier were synthesized and their structure characterized. To produce immunogenic constructs, the Abeta(4-10) epitope alone or flanked by alpha- or beta-alanine residues was attached through an amide bond to the tetratuftsin derivative (Ac-[TKPKG]4-NH2) or to a carrier peptide elongated by a promiscuous T-helper cell epitope (Ac-FFLLTRILTIPQSLD-[TKPKG]4-NH2). The conformational preferences of the carrier and conjugates were examined by CD spectroscopy in water and in 1:1 and 9:1 TFE:water mixtures (v/v). We found that the presence of flanking dimers in the conjugates had no effects on the generally unordered solution conformation of the conjugates. However, conjugates with an elongated peptide backbone exhibited CD spectra indicative for a partially ordered secondary structure in the presence of TFE. Comparative ELISA binding studies, using monoclonal antibody raised against the beta-amyloid (1-17) peptide, showed that conjugates with T-helper cell epitope in the carrier backbone exhibited decreased monoclonal antibody recognition. However, we found that this effect was compensated in conjugates comprising the Abeta(4-10) B-cell epitope with the beta-alanine dimer flanking regions at both N- and C-termini. Results suggest that modification of the B-cell epitope peptide from Abeta with rational combination of structural elements (e.g. conjugation to carrier, introduction of flanking dimers) can result in synthetic antigen with preserved antibody recognition.  相似文献   

12.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

13.
Synthetic oligopeptides comprising linear or continuous topographic B-cell epitope sequences of proteins might be considered as specific and small size antigens. It has been demonstrated that the strength and specificity of antibody binding could be altered by conjugation to macromolecules or by modification in the flanking regions. However, no systematic studies have been reported to describe the effect of different carrier macromolecules in epitope conjugates. To this end, the influence of carrier structure and topology on antibody recognition of attached epitope has been studied by comparing the antibody binding properties of a new set of conjugates with tetratuftsin analogue (H-[Thr-Lys-Pro-Lys-Gly](4)-NH(2), T20) sequential oligopeptide carrier (SOC(n)), branched chain polypeptide, poly[Lys(Ser(i)-DL-Ala(m))] (SAK), multiple antigenic peptide (MAP), and keyhole limpet hemocyanine (KLH). In these novel constructs, peptide (9)LKNleADPNRFRGKDL(22) ([Nle(11)]-9-22) representing an immunodominant B cell epitope of herpes simplex virus type 1 glycoprotein D (HSV-1 gD) was conjugated to polypeptides through a thioether or amide bond. Here we report on the preparation of sequential and polymeric polypeptides possessing chloroacetyl groups in multiple copies at the alpha- and/or epsilon-amino group of the polypeptides and its use for the conjugation of epitope peptides possessing Cys at C-terminal position. We have performed binding studies (direct and competitive ELISA) with monoclonal antibody (Mab) A16, recognizing the HSV gD-related epitope, [Nle(11)]-9-22, and conjugates containing identical and uniformly oriented epitope peptide in multiple copies attached to five different macromolecules as carrier. Data suggest that the chemical nature of the carrier and the degree of substitution have marked influence on the strength of antibody binding.  相似文献   

14.
The large number of snRNAs in the fission yeast Schizosaccharomyces pombe can be divided into four non-overlapping groups by immunoprecipitation with antibodies directed against mammalian snRNP proteins. 1) Of the abundant snRNAs, anti-Sm sera precipitate only the spliceosomal snRNAs U1, U2, U4, U5 and U6. Surprisingly, three Sm-sera tested distinguish between U2, U4 and U5 and U1 from S.pombe; one precipitating only U1 and two precipitating U2, U4 and U5 but not U1. 2) A group of 11 moderately abundant snRNAs are not detectably precipitated by human anti-Sm sera, but are specifically precipitated by monoclonal antibody H57 specific for the human B/B' polypeptides. From Aspergillus nidulans this antibody also precipitates at least 12 snRNAs. 3) Anti-(U3)RNP sera do not precipitate the above snRNAs, but precipitate at least 6 further snRNAs, including the homologues of U3. Both the anti-(U3)RNP sera and H57 also efficiently precipitate a number of discrete non-capped RNAs. 4) A small number of additional snRNAs are not detectably precipitated by any anti-serum tested to date, further analysis may identify antisera specific for these snRNPs. Western blots of purified snRNP proteins were used to identify the S.pombe proteins responsible for these immunoprecipitations. Several Sm-sera decorate a 16.3kD protein which may be a D protein homologue, monoclonal H57 decorates a further protein of 16kD and an anti-(U3)RNP serum decorates the homologue of the 36kD U3-specific protein, fibrillarin.  相似文献   

15.
Synthetic carriers play an important role in immunogen presentation, due to their ability of inducing improved and specific responses to conjugated epitopes. Their influence on the bioactive conformation of the epitope, though admittedly crucial for relevant in vitro and in vivo applications, is difficult to evaluate, given the usual lack of information on the complex conformational features determined by the nature of the carrier and the mode of ligation. Using the Herpes simplex virus glycoprotein D-1 epitope (Leu(9)-Lys-Nle-Ala-Asp-Pro-Asn-Arg-Phe-Arg-Gly-Lys-Asp-Leu(22)) as a model, we have performed a detailed conformational analysis on the free epitope peptide in solution and on three constructs in which the epitope was conjugated to sequential oligopeptide carriers {Ac-[Lys-Aib-Gly](4)-OH (SOC(4))} (through either a thioether or an amide bond; Ac: acetyl) and polytuftsin oligomers {H-[Thr-Lys-Pro-Lys-Gly](4)-NH(2) (T20)}, (through a thioether bond). The analysis of the epitope conformation in the parent protein, in carrier-conjugated and free form, suggests that the beta-turn structure of the -Asp(13)-Pro-Asn-Arg(16)- segment is highly conserved and independent of the epitope form. However, small conformational variations were observed at the C-terminal part of the epitope, depending on the nature of the carrier.  相似文献   

16.
Immunotherapeutic approaches are investigated for treatment of neurodegenerative diseases of the Alzheimer's dementia (AD) type. The identification of a beta-amyloid-plaque specific epitope, Abeta(4-10) (4FRHDSGY10), recognized by therapeutically active antibodies from transgenic AD mice could provide the basis for the development of AD vaccines. Here we report on the synthesis, structural and immuno-analytical characterization of bioconjugates comprising the beta-amyloid(4-10) epitope as new vaccine lead structures against Alzheimer's disease. To produce antigenic bioconjugates, potential immunogens, the epitope peptide elongated by a cysteine residue or a cysteinyl-pentaglycine hexapeptide unit either at the N- or C-terminus was attached via a thioether bond to synthetic oligopeptide carriers, such as oligotuftsin derivatives, sequential oligopeptide carrier, or lysine dendrimer. The antigenic properties of these constructs were determined by enzyme-linked immunosorbent assay (ELISA) using an anti-Abeta(1-17) monoclonal antibody. Our results indicate that the major factors which influence the antibody binding of the Abeta(4-10) epitope are (i) the epitope topology and (ii) the presence of a spacer moiety between the carrier and the epitope peptide. Interestingly, the carrier type had no marked effect on the binding of the antibody to the epitope-conjugates. The conformational preferences of the conjugates were examined by circular dichroism spectroscopy in water and in trifluoroethanol. In water, the conjugates adopt random coil conformation independently on their primary structure. However, differences related to the attachment site of the epitope to the carriers were determined in TFE, conjugates in which the epitope was attached to the carrier through the N-terminus exhibiting more ordered secondary structure.  相似文献   

17.
18.
Silva RA  Nguyen JY  Decatur SM 《Biochemistry》2002,41(51):15296-15303
The mechanism of helix stabilization or destabilization by different amino acids has been the subject of several experimental and theoretical studies; these studies suggest that large or bulky side chains may modulate helix stability by altering the hydration of the helix backbone. In this paper, we report a spectroscopic study to determine the effect of alanine to leucine substitutions on the conformation and solvation of specific segments of a model helical peptide. A 25-residue, alanine-rich, helical peptide [Ac-(AAAAK)(4)-AAAAY-NH(2) (AKA)] and its two leucine variants [Ac-LLLLK-(AAAAK)(3)-AAAAY-NH(2) (LKA) and Ac-(AAAAK)(4)-LLLLY-NH(2) (AKL)] were characterized by infrared (IR) and electronic circular dichroism (ECD) spectroscopies. Introduction of (13)C isotopes into specific, consecutive, backbone carbonyls for certain blocks of each of the peptides mentioned above allows the IR spectra to be interpreted in terms of the conformation and solvation of specific residues within the helix. These isotope-edited IR spectra of the leucine peptides do not show evidence of a decrease in the degree of backbone solvation compared to the alanines, but suggest that the peptide may adopt a distorted conformation to accommodate the larger leucine side chains at the N-terminus. These experiments demonstrate the power of isotope-edited IR in dissecting subtle changes in helix conformation at the residue level.  相似文献   

19.
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号