首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Deltaf), i.e., the increase in mass on the surface, and dissipation shifts (DeltaD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Deltaf and DeltaD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact of bacterial cells to surfaces and the adhesion mechanisms involved.  相似文献   

2.
The quartz crystal microbalance (QCM) was used to monitor specific, integrin-mediated adhesion of human ovarian cancer cells to distinct extracellular matrix (ECM) proteins immobilized on gold-coated quartz crystal resonators. The QCM was operated in the impedance analysis mode, where frequency shift as well as bandwidth are accessible on a broad range of overtones. The increase in bandwidth caused by covering the quartz resonator with cells was reproducible and largely independent of overtone order, whereas the frequency shift displayed some variability. Thus the bandwidth proved to be the more robust parameter for sensing cell adhesive events. The bandwidth increased in proportion to the number of seeded cells to the quartz crystal as long as the number was below 150,000 cells/ml. Comparing the resonance parameters on different harmonics, one finds that viscoelastic modeling with homogeneous layer systems cannot reproduce the results: lateral heterogeneity has to be taken into account. The differences in adhesive strength of human ovarian cancer cells towards selected ECM proteins monitored by QCM was in good agreement with data obtained by conventional cell adhesion assays. Strong cell adhesion was observed to the ECM proteins vitronectin (VN) and fibronectin (FN), while only weak attachment occurred on laminin. In order to prove specific, integrin alphavbeta3-mediated cell adhesion to its ligands FN and VN, the cyclic integrin alphavbeta3-directed peptide c(RGDfV) was used as competitor and significantly reversed cell adhesion. Since integrin interaction with ECM proteins is dependent on the presence of bivalent cations, cell detachment was also seen after treatment of cell monolayers with the chelator ethylene-dinitro-tetra-acetic acid (EDTA). The QCM technique is a reliable method to monitor cell adsorption to ECM-pretreated surfaces in real time. It may be an alternative tool for screening specific and selective antagonists of integrin/ECM interaction.  相似文献   

3.
The electroformation of giant vesicles from 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical microscopy, simultaneously using a novel sample cell design. A gold-coated QCM crystal was used as one of the electrodes and an Indium–tin-oxide (ITO)-coated glass slide was used as the second electrode for electroformation. Increases in the frequency and decreases in the dissipation were observed immediately upon voltage application between the two electrodes, indicating the loss of lipid from the QCM surface. Concurrently, we observed vesicles on the QCM electrode surface by differential interference contrast (DIC)-optical microscopy. The lipid-coated substrates were measured with AFM at various stages in the electroformation, and a significant change in the morphology of the lipid film was observed. Ellipsometry was used to find the average thickness of lipid film. The QCM data were fitted to a viscoelastic model to determine the viscoelastic properties and time dependence of the film thickness. All methods used to determine film thickness give values in reasonable quantitative agreement. Differences between the methods are consistent with what one might expect due to what is actually measured in the individual techniques. The comparison between mass loss and observed vesicles suggest that the vesicles formed are first localized to the substrate and then slowly released into the solution. By comparing the mass lost from the lipid film, to the total surface area of lipid vesicles observed, it is apparent that only a relatively small fraction of the lipid goes into the production of unilamellar vesicles with sizes detectable with optical microscopy.  相似文献   

4.
Biocompatibility of polymers is an important parameter for the successful application of polymers in tissue engineering. In this work, quartz crystal microbalance (QCM) devices were used to follow the adhesion of NIH 3T3 fibroblasts to QCM surfaces modified with fibronectin (FN) and poly-D -lysine (PDL). The variations in sensor resonant frequency (Δf) and motional resistance (ΔR), monitored as the sensor signal, revealed that cell adhesion was favored in the PDL-coated QCMs. Fluorescence microscopy images of seeded cells showed more highly spread cells on the PDL substrate, which is consistent with the results of the QCM signals. The sensor signal was shown to be sensitive to extracellular matrix (ECM)-binding motifs. Ethylenediaminetetraacetic acid (EDTA) and soluble Gly-Arg-Gly-Asp-Ser (GRGDS) peptides were used to interfere with cell-ECM binding motifs onto FN-coated QCMs. The acquired acoustic signals successfully showed that in the presence of 30 mM EDTA or 1 mM GRGDS, cell adhesion is almost completely abolished due to the inhibition/blocking of integrin function by these compounds. The results presented here demonstrate the potential of the QCM sensor to study cell adhesion, to monitor the biocompatibility of polymers and materials, and to assess the effect of adhesion modulators. QCM sensors have great potential in tissue engineering applications, as QCM sensors are able to analyze the biocompatibility of surfaces and it has the added advantage of being able to evaluate, in situ and in real time, the effect of specific drugs/treatments on cells.  相似文献   

5.
In this study we evaluated the quartz crystal microbalance (QCM) as a biosensor for a real-time investigation of liposomal binding, under dynamic flow conditions, onto target proteins immobilized at the sensor. The mass-sensitive frequency changes of quartz sensors allow for a quantification of the liposomal binding process. Furthermore, simultaneous damping analysis gives an insight into liposomal behavior, such as the degree of liposomal deformation or spreading at the target surface. In this study a series of liposomes was evaluated, differing in the kind and concentration of ligands interacting with appropriate target proteins. It became evident that an increase in homing device concentration accelerated deformation and flattening of liposomes, triggering a fusion process. Furthermore, liposomal deformation corresponded with the binding affinity of target molecules, comparing biotin/avidin with E-selectin/ligand interactions. Deformation could be emphasized using dioleoylphosphatidylethanolamine (DOPE) as a fusiogenic membrane component, while sterical stabilization by polyethylenglycol (PEG-PE) appeared in a low degree of deformation. Consequently, the online detection of liposomal target binding by QCM is an excellent facility to control and predict the liposomal behavior at the target site for increasing therapeutic potency.  相似文献   

6.
In this study we evaluated the quartz crystal microbalance (QCM) as a biosensor for a real-time investigation of liposomal binding, under dynamic flow conditions, onto target proteins immobilized at the sensor. The mass-sensitive frequency changes of quartz sensors allow for a quantification of the liposomal binding process. Furthermore, simultaneous damping analysis gives an insight into liposomal behavior, such as the degree of liposomal deformation or spreading at the target surface. In this study a series of liposomes was evaluated, differing in the kind and concentration of ligands interacting with appropriate target proteins. It became evident that an increase in homing device concentration accelerated deformation and flattening of liposomes, triggering a fusion process. Furthermore, liposomal deformation corresponded with the binding affinity of target molecules, comparing biotin/avidin with E-selectin/ligand interactions. Deformation could be emphasized using dioleoylphosphatidylethanolamine (DOPE) as a fusiogenic membrane component, while sterical stabilization by polyethylenglycol (PEG-PE) appeared in a low degree of deformation. Consequently, the online detection of liposomal target binding by QCM is an excellent facility to control and predict the liposomal behavior at the target site for increasing therapeutic potency.  相似文献   

7.
By means of the quartz crystal microbalance (QCM) and scanning force microscopy (SFM), the adsorption of ezrin, a member of the ezrin/radixin/moesin protein family, on l-alpha-phosphatidylinositol-4,5-bisphosphate (PIP(2)) containing solid-supported membranes was investigated. An increase in the PIP(2) content in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes resulted in an increased amount of bound ezrin strongly supporting the crucial role of PIP(2) for ezrin recruitment to membranes. No ezrin adsorption to membranes composed of pure POPC was detected. To characterize the binding process in more detail, the kinetics and reversibility of ezrin adsorption were investigated by the QCM technique, showing that the protein remains partly bound after rinsing with pure buffer, which we suspected to be a result of lateral interactions between the proteins. SFM images revealed the formation of two-dimensional ezrin clusters on PIP(2)-doped POPC membranes. Time-elapsed SFM images show that the growth of protein domains occurs from a few nucleation sites. The QCM data in conjunction with the results obtained by SFM led us to propose that the binding process of ezrin occurs in a positive cooperative manner. When lateral interactions of the proteins on the membrane were taken into account, we were able to simulate the kinetics obtained from time-resolved QCM readouts by employing a model developed by Minton. On the basis of the kinetic analysis, we were also able to reconstruct the adsorption isotherm.  相似文献   

8.
During transformation of a normal cell to a cell capable of forming a cancerous growth, cellular morphology, the cytoskeleton, and focal contacts undergo significant changes. These changes should be capable of being characterized via real-time monitoring of the dynamic cell adhesion process and viscoelastic properties of cells. Here, we describe use of the quartz crystal microbalance (QCM) to distinguish the dynamic cell adhesion signatures of human normal (HMEC) versus malignant (MCF-7) mammary epithelial cells. The significantly reduced QCM responses (changes in frequency [Δf] and motional resistance ΔR) of MCF-7 cells compared with those of HMECs mirror the cancer cells' morphological features as observed via optical microscope. We analyzed the initial 2-h cell adhesion kinetics, suggesting cell-cell cooperativity for HMECs and no or weak cell-cell interactions for MCF-7 cells. We propose that changes of the ΔR/Δf ratio, which we term the cell viscoelastic index (CVI), reflect the establishment of cytoskeleton structure and dynamic viscoelastic properties of living cells. The CVI decreases significantly on initiation of cell to surface interactions as cells establish their cytoskeletal structures. During the cell adhesion process, MCF-7 cells were consistently softer, exhibiting up to a 2.5-fold smaller CVI when compared with HMECs.  相似文献   

9.
The quartz crystal microbalance (QCM) was used to monitor endothelial cell (EC) adhesion on the gold surface of an oscillating quartz crystal contained in a QCM device. A number of parameters were investigated. First, we observed differential QCM O-ring toxicities for ECs. Second, appropriate conditions for cell culture and QCM cell environment were identified that can eliminate large-scale frequency oscillations in the measurements. These artifacts are not due to added cells but originate in the time-dependent evaporation of water. Having eliminated these artifacts, we then demonstrated that the measured steady-state crystal frequency shift, Delta f, and motional resistance shift, DeltaR, were determined by the number of firmly attached ECs requiring trypsinization from the crystal surface. Last, following steady-state attachment of ECs, the EC growth stimulation by fibroblast growth factor was monitored in a continuous fashion by measuring f and R values over a 72 h. period. We observed the Delta f values to increase in a way that reflected the increase in EC number bound to the QCM surface. Following addition of ECs to the QCM, the time-dependent increase in DeltaR can be interpreted in terms of increase by the ECs of the energy dissipation properties of the solution at the solution-gold surface interface. This effect is due to their rapid surface attachment and the elaboration of their cytoskeletal properties. These results indicate that the QCM technique can be used for the study of EC attachment and growth and suggest its potential for the real time study of per unit surface area cell mass distribution dynamics and viscoelastic properties and the cells' responses to stresses or perturbations brought about using biologically active molecules.  相似文献   

10.
Staphylococcus aureus is known to cause biomaterial-associated infections of implants and devices once it has breached the skin and mucosal barriers. Adhesion is the initial step in the development of a biomaterial-associated infection, and strategies to prevent staphylococcal adhesion and thus biomaterial-associated infections require understanding of the adhesive bond. The aim of this study was to compare the adhesive bond stiffnesses of two S. aureus strains with and without fibronectin-binding proteins (FnBPs) adhering to a fibronectin-coated quartz crystal microbalance (QCM) sensor surface on the basis of a coupled- resonance model. Both fibronectin adsorption and staphylococcal adhesion were accompanied by negative frequency shifts, regardless of the absence or presence of FnBPs on the staphylococcal cell surfaces. This is the opposite of the positive frequency shifts often observed for other bacterial strains adhering to bare sensor surfaces. Most likely, adhering staphylococci sink into and deform the adsorbed protein layer, creating stiff binding with the sensor surface due to an increased bacterium-substratum contact area. S. aureus 8325-4 possesses FnBPs and yields less negative frequency shifts (Δf) that are further away from the zero-crossing frequency than S. aureus DU5883. This suggests that FnBPs on S. aureus 8325-4 create a stiffer bond to the fibronectin coating than has been observed for S. aureus DU5883. Due to a limited window of observation, as defined by the available resonance frequencies in QCM, we could not determine exact stiffness values.  相似文献   

11.
Recent applications of quartz crystal resonant sensor technology to monitor cell adhesion and specific ligand interaction processes has triggered the development of a new category of quartz crystal microbalance (QCM) based biosensors. In this study human oral epithelial cells (H376) were cultured on quartz sensors and their response to microspheres investigated in situ using the QCM technique. The results demonstrated that this novel biosensor was able to follow cell-microsphere interactions in real-time and under conditions of flow as would occur in the oral cavity. Unique frequency profiles generated in response to the microspheres were postulated to be due to phases of mass addition and altered cellular rigidity. Supporting microscopic evidence demonstrated that the unique frequency responses obtained to these interactions were in part due to binding between the cell surface and the microspheres. Furthermore, a cellular uptake process, in response to microsphere loading was identified and this, by influencing the rigidity of the cellular cytoskeleton, was also detectable through the frequency responses obtained.  相似文献   

12.
Carbohydrate moieties of the cellular glycocalyx have been suggested to play an important role in biological recognition processes during pathologic conditions, such as inflammation and cancer. Herein, we describe lectin-modified liposomes which might have potential for site-specific drug delivery during the therapy of such diseases. Specific interactions of plain (i.e., unmodified) and PEGylated, lectin-grafted liposomes with model membranes were investigated under real-time flow conditions using a quartz crystal microbalance. In addition, the morphology of the liposomal systems was assessed by atomic force microscopy. Plain liposomes exhibited only unspecific adhesion to glycolipid membranes and had a tendency to coalesce. The degree of membrane interaction was significantly increased when plain liposomes were modified with the lectin, Concanavalin A. However, vesicle fusion also markedly increased as a result of lectin modification. Additional PEGylation of liposomes reduced unspecific adhesion phenomena, as well as coalescence. Moreover, our studies enabled us to establish quartz crystal microbalance and atomic force microscopy as powerful and complementary methods to characterize adhesion properties of targeted drug delivery systems.  相似文献   

13.
Carbohydrate moieties of the cellular glycocalyx have been suggested to play an important role in biological recognition processes during pathologic conditions, such as inflammation and cancer. Herein, we describe lectin-modified liposomes which might have potential for site-specific drug delivery during the therapy of such diseases. Specific interactions of plain (i.e., unmodified) and PEGylated, lectin-grafted liposomes with model membranes were investigated under real-time flow conditions using a quartz crystal microbalance. In addition, the morphology of the liposomal systems was assessed by atomic force microscopy. Plain liposomes exhibited only unspecific adhesion to glycolipid membranes and had a tendency to coalesce. The degree of membrane interaction was significantly increased when plain liposomes were modified with the lectin, Concanavalin A. However, vesicle fusion also markedly increased as a result of lectin modification. Additional PEGylation of liposomes reduced unspecific adhesion phenomena, as well as coalescence. Moreover, our studies enabled us to establish quartz crystal microbalance and atomic force microscopy as powerful and complementary methods to characterize adhesion properties of targeted drug delivery systems.  相似文献   

14.
We have measured the kinetics of adsorption of small (12.5-nm radius) unilamellar vesicles onto SiO2, oxidized gold, and a self-assembled monolayer of methyl-terminated thiols, using a quartz crystal microbalance (QCM). Simultaneous measurements of the shift in resonant frequency and the change in energy dissipation as a function of time provide a simple way of characterizing the adsorption process. The measured parameters correspond, respectively, to adsorbed mass and to the mechanical properties of the adsorbed layer as it is formed. The adsorption kinetics are surface specific; different surfaces cause monolayer, bilayer, and intact vesicle adsorption. The formation of a lipid bilayer on SiO2 is a two-phase process in which adsorption of a layer of intact vesicles precedes the formation of the bilayer. This is, to our knowledge, the first direct evidence of intact vesicles as a precursor to bilayer formation on a planar substrate. On an oxidized gold surface, the vesicles adsorb intact. The intact adsorption of such small vesicles has not previously been demonstrated. Based on these results, we discuss the capacity of QCM measurements to provide information about the kinetics of formation and the properties of adsorbed layers.  相似文献   

15.
Amphiphilic decyl derivatives of D-tyrosine self-assemble into long rodlike or tubular aggregate structures in aqueous buffered solution. In this report we demonstrate the novel use of the quartz crystal microbalance (QCM) to measure the presence in solution, and subequent enzymatic polymerization, of long rodlike monomer aggregates of the decyl ester of D-tyrosine (DEDT) as a function of their formation and increasing surface binding level as pH values increase from 3 to 7. From these data, using the Sauerbray equation to calculate the effective elastic mass surface binding of deprotonated DEDT aggregates, a pKapp of 8.3 is obtained for the DEDT alpha-NH2 group protonation-deprotonation and subsequent aggregation equilibrium. Furthermore, once aggregates are bound to the QCM surface, we initiate and subsequently monitor enzymatic polymerization of the DEDT monomers by horseradish peroxidase through the measurement of significant changes in the quartz crystal frequency and motional resistance. Following the onset of polymerization, the viscoelastic properties of the bound monomer aggregates change. A final polymerized state is achieved in which the altered physical properties of the polymerized rodlike aggregates make the solution immediately above the QCM surface-solution interface behave as a Newtonian fluid, producing a nearly pure viscosity-density energy dissipative effect on the measured crystal frequency and motional resistance values.  相似文献   

16.
Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5–20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.  相似文献   

17.
A quartz crystal microbalance (QCM) was used to study the adhesion behavior of supramolecular aggregates at supported planar bilayers (SPBs). The QCM technique is a suitable method to detect the adsorption of biomolecules at the quartz surface owing to its sensitivity for changes in mass and viscoelastic properties. To simulate biomembranes, the quartz plates were coated with highly ordered lipid films. Therefore, a combination of self-assembled monolayers and Langmuir-Blodgett films was used. Firstly, the adsorption of liposomes coupled with the lectin concanavalin A was investigated at glycolipid-containing model membranes. Using different carbohydrates, it was possible to determine specific and nonspecific parts of the interactions. The adhesion occurred owing to specific lectin-carbohydrate interactions (about 20%) and to nonspecific interactions (about 80%). The composition of the liposomes was changed to simulate the structure of a native biomembrane consisting of the glycocalix, the lipid-protein bilayer, and the cytoskeleton. An artificial glycocalix was created by incorporating poly(ethylene glycol) into the liposomes. Liposomes which were intravesicular polymerized with polyacrylamide or polyacrylcholate simulated the cytoskeleton. It was determined that the modified liposomes had significant lower interactions with SPBs. The adsorption was reduced by approximately 80% compared to unmodified liposomes. Secondly, a model was developed for the detection of interactions between simple or mixed bile salt micelles and model membranes. It was found that simple bile salts did not adsorb at model membranes. Binary systems consisting of bile salt and phospholipid induced only small interactions. On the other hand, ternary systems consisting of bile salt, phospholipid, and fatty acid showed strong interactions. A dependence on the chain length of the fatty acid was observed. Thirdly, the interaction between ganglioside-containing model membranes and cholera toxin (beta-subunit) was investigated. Different ganglioside fractions showed varying adsorption in the following sequence: GM1 > GD1a > GD1b > GT1b.  相似文献   

18.
A polymer film of porphyrin was formed through electropolymerization of p-amino-substituted tetraphenylporphyrin on indium tin oxide (ITO) surfaces. The adhesion and proliferation of MCF-7 cells (human breast cancer cell line) on the film were investigated. It was found that cells cultured on this film could attach and spread more rapidly than on glass, ITO and tissue culture polystyrene (TCPS), and thus the film was demonstrated to be a good adhering substrate. MTT experimental results show that the viability of cells cultured on this film is higher than on TCPS, and fluorescence microscopic observation indicates that cells cultured on the film are not under apoptosis. Based on its excellent cytocompatibility, the polyporphyrin film was used to modify the gold electrode surface of a piezoelectric quartz crystal, and quartz crystal microbalance (QCM) technique was applied for real-time monitoring of MCF-7 cell growth and assessment of chemical cytotoxicity. The proliferation and condition of cells on the surface of the film-modified quartz crystal gold electrode were investigated through fluorescence microscopic observation. The results obtained from QCM experiments are consistent with that from microscopic observation. Additionally, the polymerized film on gold surface can be removed completely and easily, which greatly improves the reproducibility of the quartz crystal gold electrode.  相似文献   

19.
The suitability of the quartz crystal microbalance (QCM) technique for monitoring the attachment and spreading of mammalian cells has recently been established. Different cell species were shown to generate an individual response of the QCM when they make contact with the resonator surface. Little is known, however, about the underlying mechanisms that determine the QCM signal for a particular cell type. Here we describe our results for different experimental approaches designed to probe the particular contributions of various subcellular compartments to the overall QCM signal. Using AC impedance analysis in a frequency range that closely embraces the resonators' fundamental frequency, we have explored the signal contribution of the extracellular matrix, the actin cytoskeleton, the medium that overlays the cell layer, as well as the liquid compartment that is known to exist between the basal plasma membrane and the culture substrate. Results indicate that the QCM technique is only sensitive to those parts of the cellular body that are involved in cell substrate adhesion and are therefore close to the resonator surface. Because of its noninvasive nature, sensitivity, and time resolution, the QCM is a powerful means of quantitatively studying various aspects of cell-substrate interactions.  相似文献   

20.
Missing mass effect in biosensor's QCM applications   总被引:1,自引:0,他引:1  
Nowadays, liquid applications of quartz crystal microbalance (QCM) opened a way for in situ studies of proteins, vesicles and cells adsorbed from the solution onto the QCM surface. The sensitivity of QCM to the viscoelasticity of the adsorbed biomaterial can be a reason of the experimentally observed deviation from a linear dependence of QCM resonant frequency on mass deposition (the so-called Sauerbrey relation) and can limit its application for biosensoring. Presented here rigorous theoretical analysis explains the deviation from ideal mass response of soft overlayers in the contact with liquid. The fundamental result of the theory is the analog of Sauerbrey relation for layered viscous/viscoelastic medium which can be exploited for the correct physical interpretation of QCM experimental data in biofluids, in particular for measurements of the 'true' surface mass of adsorbed biomolecular films. We predict a new physical effect 'missing mass' of the sample in liquid phase measurements and compare the results given by our theory with QCM measurements on supported membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号