首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADP+-malic enzyme ( l -malate: NADP+ oxidoreductase, decarboxylating EC 1.1.1.40) from pod walls of chickpea was purified 51-fold by ammonium sulphate fractionation, DEAE- cellulose chromatography and gel filtration through Sepharose 4B. The purified enzyme required a divalent cation, either Mn2+ or Mg2+, for its activity. Km values at pH 7.8 for malate, NADP+ and Mn2+ were 4.0, 0.031 and 0.71 m M , respectively. Mn2+-dependent activity was inhibited by heavy metal ions such as Cd2+, Zn2+, Hg2+, and to a lesser extent by Pb2+ and Al3+. Among the organic acids examined, sodium salts of oxalate and oxaloacetate were inhibitory. Kinetics of the reaction mechanism showed sequential binding of malate and NADP+ to the enzyme. Products of reaction, viz. pyruvate, bicarbonate and NADPH, inhibited the enzyme activity. At limiting concentrations of NADP+, pyruvate and bicarbonate induced a positive cooperative effect by malate. It is proposed that the activity of NADP+-malic enzyme is controlled by intracellular concentrations of substrates and products.  相似文献   

2.
The gradual quenching of the emission fluorescence of 3-HBA in the visible region upon titration with 3-HBA-6-hydroxylase and distinct changes in the near-UV circular dichroic spectrum of the enzyme in the presence of substrate suggest the formation of a stable enzyme-substrate complex. The binding of aromatic substrate 3-hydroxybenzoate to 3-hydroxybenzoate-6-hydroxylase occurs without gross changes in the backbone structure of the enzyme. The binding strength of the ES complex is partially reduced upon chemical modification of arginine, histidine, or tryptophan residues of enzyme, probably implicating their concerted action in the binding of substrate to enzyme. Partial inactivation of enzyme and diminished stability of the ES complex in response to treatment with 1 M urea could be ascribed to localized effects of the denaturant.  相似文献   

3.
Abstract: The aim of the present study was to examine the roles of membrane depolarization, calcium influx, and cyclic AMP synthesis in regulating the stability and inactivation of serotonin N -acetyltransferase activity (NAT) in cultured chick photoreceptor cells. NAT activity was induced by pretreating cells for 6 h with 1 µ M forskolin. Cycloheximide was subsequently added, and the rate of loss of enzyme activity (inactivation) was determined. After induction, in the presence of cycloheximide, NAT activity declined with a half-life of ∼30 min. The rate of inactivation was greatly reduced when depolarizing concentrations of K+, forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, or 3-isobutyl-1-methylxanthine were added together with cycloheximide. The apparent increase in NAT stability caused by K+ was abolished by addition of EGTA or nifedipine and potentiated by Bay K 8644, indicating the involvement of Ca2+ influx through dihydropyridine-sensitive channels. MDL-12330A, an inhibitor of K+-stimulated cyclic AMP formation, blocked the effect of depolarizing concentrations of K+. This result suggests that the effect of Ca2+ influx on the stability of NAT is at least partially mediated by increased levels of cyclic AMP. Thus, depolarization-evoked Ca2+ influx and cyclic AMP formation have two roles in the regulation of NAT activity in chick photoreceptor cells. First, they stimulate the de novo synthesis of NAT or a regulatory protein required for NAT activity. Second, they increase the half-life of the enzyme, presumably by regulating the turnover of existing enzyme molecules.  相似文献   

4.
The reductive carboxylation of α-ketoglutarate by purified NADP+-isocitrate dehydrogenase (EC 1.1.1.42) from maturing castor bean seeds ( Ricinus communis L. ) has been characterized. The optimum pH for the reaction was 6.5, whereas pH 8.5 was optimum for oxidation of isocitrate (forward reaction). The enzyme utilized NADH as well as NADPH as the reducing agent in the reverse reaction, but only NADP+ in the forward reaction. The Km values for NADPH and NADH were 0.044 and 2.8 m M respectively, and for α-ketoglutarate and HCO3 4.1 and 3.7 m M. The enzyme was activated by various cations including Mg2+, Mn2+, Co2+, Zn2+, Ni2+ and Co2+. Km values for Mg2+ Mn2+, Co2+ and Zn2+ were 12, 34, 37 and 49μ M respectively.  相似文献   

5.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

6.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

7.
Abstract: We investigated the rapid and slow effects of NaF on intracellular signaling systems such as Ca2+ homeostasis and cyclic GMP (cGMP) generation in rat glioma C6 cells, using the Ca2+-sensitive dye fura-2 and cGMP enzyme immunoassay. We found that the following: (a) NaF enhanced cGMP generation in a concentration-dependent manner. This enhancement was abolished by pretreatment with 100 µ M BAPTA tetraacetoxymethyl ester or in the presence of W-7 in a concentration-dependent manner. N G-Monomethyl- l -arginine (NMMA), a competitive inhibitor of nitric oxide synthase (NOS), also inhibited the NaF-induced generation of cGMP. These results suggest that NaF-induced cGMP generation occurs via a calcium/calmodulin- and NOS-dependent pathway. (b) The basal intracellular Ca2+ concentration ([Ca2+]i) was transiently greater at 1 and 3 h after pretreatment with NaF. W-7 and W-13 antagonized the increase in [Ca2+]i, whereas NMMA had little effect. This suggests that the NaF-induced change in basal [Ca2+]i was mediated by a calmodulin-dependent pathway but was independent of a NOS-sensitive pathway. (c) The serotonin (5-HT)-induced intracellular mobilization of Ca2+ was reduced by pretreating the cells with NaF. The reduction in Ca2+ mobilization was antagonized by genistein, a tyrosine kinase inhibitor. W-7, W-5, and H-8 had no effect. Results suggest that NaF differentially regulates the cGMP generation, basal [Ca2+]i, and 5-HT2A receptor function in C6 glioma cells.  相似文献   

8.
Obligately anaerobic ruminal bacteria have been found to possess phytase activity, in particular, Selenomonas ruminantium . The phytase activity of S. ruminantium JY35 was produced late in growth and required neither phytate for induction nor phosphate limitation for derepression. The activity was completely cell-associated with a significant fraction extractable by a magnesium chloride solution. Zymogram analysis suggested that the activity was the result of a single gene product of a monomeric nature and approximately 46 kDa in size. The phytase had a temperature optimum of 50–55 °C, but activity dropped off sharply at 60 °C. Phytase activity was optimal over the pH range of 4·0–5·5, and dependent on the nature of the buffer used. Activity was inhibited by citric acid buffer and by the addition of 5 mmol l−1 Fe2+, Fe3+, Cu2+, Zn2+ and Hg2+. The addition of 5 mmol l–1 Pb2+ to the enzyme assay appeared to enhance activity of the enzyme.  相似文献   

9.
10.
Abstract 3-Isopropylmalate dehydrogenase was purified (about 2000-fold) to homogeneity for the first time from an archaebacterium, Sulfolobus sp. strain 7. The enzyme showed an apparent molecular mass of about 110 kDa by gel filtration and a single 36-kDa polypeptide band on SDS-PAGE, suggesting tri- or tetrameric structure. The p I value was 6.9. The N-terminal amino acid sequence was similar to enzymes from other sources. The enzyme activity was greatly stimulated by the presence of Mn2+, Cd2+, Mg2+, or Co2+. In contrast to 3-isopropylmalate dehydrogenase from other sources, monovalent cations such as K2+ and Na2+ were neither essential for activity nor stability of the protein. The enzyme was extraordinarily thermostable.  相似文献   

11.
The chelating agents, EDDHA, its iron salt, EDTA, and salicylic acid enhance bud formation in Bartramidula bartramioides (Griff.) Wijk & Marg. Salicylic acid elicits optimal response at 10–4 M , whereas the other substances do so at 10–7 M . Increased concentration of ferric citrate and cupric sulphate also stimulate bud induction. The accumulation of Fe3+ and Cu2+ is facilitated by chelators. The endogenous iron content is maximum at 10–7 M EDDHA or EDTA, which is also the concentration optimal for bud induction.  相似文献   

12.
Characterization of phytochelatin synthase from tomato   总被引:11,自引:0,他引:11  
The enzyme that synthesizes Cd-binding phytochelatins (PCs), PC synthase, has been studied in tomato ( Lycopersicon esculentum ) cell cultures and plants. This enzyme transfers γ-GluCys from GSH or PC to either GSH or an existing polymer of (γ-GluCys)nGly. PC synthase from tomato requires GSH or PCs as substrates but cannot utilise γ-GluCys or GSSG. PC synthase is activated both in vivo and in vitro by a variety of heavy metal ions, including Cd2+, Ag+, Cu2+, Au+, Zn2+, Fe2+, Hg2+ and Pb2+. In crude protein extracts from tomato cells the enzyme has an apparent Km of 7.7 m M for GSH in the presence of 0.5 m M Cd2+, and exhibits maximum activity at pH 8.0 and 35°C. PC synthase is present in tomato cells grown in the absence of Cd. The level of enzyme activity is regulated during the cell culture cycle, with the highest activity occurring 3 days after subculture. Cadmium-resistant tomato cells growing in medium containing 6 m M CdCl2 have a 65% increase in PC synthase activity compared to unselected cells. PC synthase is also present in roots and stems of tomato plants, but not in leaves or fruits. The distribution of the enzyme in tomato plants and regulation of PC synthase activity in tomato cells indicate that PC synthase, and PCs, may have additional functions in plant metabolism that are not directly related to the formation of Cd-PC complexes in response to cadmium.  相似文献   

13.
Note: Purification of amylase secreted from Bifidobacterium adolescentis   总被引:1,自引:0,他引:1  
Bifidobacterium adolescentis Int-57 isolated from human faeces produced extracellular amylase. The enzyme was purified from the culture supernatant fluids by ammonium sulphate precipitation, gel-filtration chromatography (Sephadex-G-75), ion-exchange chromatography (CM-cellulose) and FPLC. SDS-PAGE of the purified enzyme revealed a major band with an apparent molecular weight of 66 kDa. The pI was 5·2. Enzyme activity was optimal at 50°C, and at pH 5·5. The enzyme was stable at 20–40°C, and at pH 5–6 with a K m value of 2·4 g l−1 soluble starch. The activation energy was 42·3 kJ mol−1. The enzyme was significantly inhibited by maltose (10%), glucose (10%), Cu2+ (5 mmol l−1), Zn2+ (5 mmol l−1), N- bromosuccinimide (5 mmol l−1), EDTA (5 mmol l−1), I2 (1 mmol l−1) and activated by β-mercaptoethanol (10 mmol l−1).  相似文献   

14.
Abstract: Pineal arylalkylamine N -acetyltransferase ( N -acetyltransferase) controls large daily changes in melatonin production. It is generally thought that the activity of this enzyme is controlled by norepinephrine acting exclusively via elevation of cyclic AMP. However, norepinephrine also elevates pineal intracellular Ca2+ concentration ([Ca2+]i), and it is not known whether Ca2+ is involved in regulating N -acetyltransferase activity other than through its established role in cyclic AMP production. In this study, the issue of whether Ca2+ enhances the effects of cyclic AMP on N -acetyltransferase activity was investigated. The effects of cyclic AMP protagonists (isobutylmethylxanthine, N 6, 2'- O -dibutyryladenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and adenosine 3',5'-cyclic monophosphothioate, Sp-diastereomer) were examined in combination with [Ca2+]i protagonists (A23187, ionomycin, and phenylephrine). All [Ca2+]i protagonists potentiated the effects of cyclic AMP protagonists. For example, ionomycin potentiated the effects of low concentrations of 8-bromoadenosine 3',5'-cyclic monophosphate, and A23187 potentiated the effects of isobutylmethylxanthine without altering cyclic AMP accumulation. These findings indicate that Ca2+ and cyclic AMP probably act physiologically in a coordinated manner to stimulate N -acetyltransferase activity; these second messengers could act directly at one or more sites or through indirect actions mediated by kinases.  相似文献   

15.
Abstract A bacterium, as yet unidentified, has been isolated from floor dust by direct selection on minimal agar using l -glucitol ( d -gulitol) as the sole carbon energy source. The bacterium possesses a constitutive enzyme which catalyzes the reaction: l -glucitol + NAD+→ d -sorbose + NADH + H+. A new species of enzyme has been induced by l -arabinitol or ribitol, but not l - or d -glucitol, and the induction is only partially counteracted by the glucose-repression effect. The constitutive enzyme was purified by fractionation on Sephadex G-200 gel and chromatography on DEAE Biogel A. The enzyme required NAD+, but not NADP+, as a cofactor. It oxidizes also ribitol, xylitol and l -arabinitol, but not d -arabinitol, lactitol or a variety of other commercially available alditols. The enzyme is not inhibited by 10 mM sodium azide but is totally inhibited by 0.1 mM potassium ferricyanide.  相似文献   

16.
Abstract: To study how growth factors affect stimulus-secretion coupling pathways, we examined the effects of nerve growth factor (NGF), epidermal growth factor (EGF), and insulin on ATP-induced [Ca2+]i rise and dopamine secretion in PC12 cells. After a 4-day incubation of cells, all three factors increased ATP-induced dopamine secretion significantly. We then examined which step of ATP-induced secretion was affected by the growth factors. Cellular levels of dopamine-β-hydroxylase and catecholamines were increased by NGF treatment but were not affected by EGF or insulin. The ATP-induced [Ca2+]i rise was also enhanced after growth factor treatment. The EC50 of ATP for inducing [Ca2+]i rise and dopamine secretion was increased by NGF treatment but not by treatment with EGF or insulin. Accordingly, the dependence on [Ca2+]i of dopamine secretion was increased significantly only in NGF-treated cells. Our results suggest that for EGF- and insulin-treated PC12 cells, the increase in secretion is mainly due to increased potency of ATP in inducing [Ca2+]i rise. NGF treatment not only increased the potency of ATP but also decreased the Ca2+ sensitivity of the secretory pathway, which as a result becomes more tightly regulated by changes in [Ca2+]i.  相似文献   

17.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

18.
A procedure for the partial purification of a non-specific alkaline phosphatase (EC 3.1.3.1.) from the embryonic axes of chick-pea seeds is described. Ammonium sulphate precipitation, DEAE-cellulase chromatography, Sephacryl S-200 chroma-tography and polyacrylamide gel electrophoresis are the most important steps. The molecular weight of this non-specific enzyme, as determined by Sephacryl S–200 gel filtration and SDS–polyacrylamide gel electrophoresis, was estimated as being 68 and 78 kDa respectively; the optimum pH for p-nitrophenylphosphate hydrolysis was 7.5, and the Km for this artificial substrate was 0.5 mM. The enzyme catalyzes the hydrolysis of a variety of organic phosphate esters. The best substrates are: phos-phoenolpymvate (Km= 2.4 m M ), NADP+ (Km= 4.0 m M ), 5'-AMP (Km= 4.5 m M ), 5'-ADP (Km= 6.1 m M ) and ribose-5P (Km= 5.8 m M ); but it is unable to hydrolyze 5'-ATP, phosphocreatine and tripolyphosptiate. Phospate was a competitive inhibitor. Zn2+, K+, Hg2+ and Mo6+ were strong inhibitors, whereas F and Ca2+ inhibited weakly; Co2+ and Ni2+ were activators.  相似文献   

19.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

20.
β-Galactosidase (EC 3.2.1.23) has been established as the main enzyme involved in the autolytic process. The enzyme extracted from cell walls of epicotyls of Cicer arietinum L. cv. Castellana with 3 M LiCl is a 45 kDa protein composed of a single subunit, having an optimum pH of 4; an optimum temperature of 45°C and Km and Vmax of 1.72 m M and 18.5 nkat (mg protein)–1 respectively, as evaluated against p -nitrophenyl-β- d -galactopyranoside. The enzyme is inhibited by Hg2+, d -galactono-1,4-lactone and galactose, substances that also inhibit the autolytic process. Ca2+ and EDTA, which do not affect the activity of the β-gaiactosidase, do however modify the hydrolysis of the cell wall mediated by the enzyme, and they also inhibit the autolytic process. Ca2+ decreased both processes, whereas EDTA increased them; and when both substances were added together, their individual effects were neutralized. The effects of both agents is probably due to modifications in the cell wall that prevent access of the enzyme to its substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号