首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

2.
3.
4.
We present a parametric family of regression models for interval-censored event-time (survival) data that accomodates both fixed (e.g. baseline) and time-dependent covariates. The model employs a three-parameter family of survival distributions that includes the Weibull, negative binomial, and log-logistic distributions as special cases, and can be applied to data with left, right, interval, or non-censored event times. Standard methods, such as Newton-Raphson, can be employed to estimate the model and the resulting estimates have an asymptotically normal distribution about the true values with a covariance matrix that is consistently estimated by the information function. The deviance function is described to assess model fit and a robust sandwich estimate of the covariance may also be employed to provide asymptotically robust inferences when the model assumptions do not apply. Spline functions may also be employed to allow for non-linear covariates. The model is applied to data from a long-term study of type 1 diabetes to describe the effects of longitudinal measures of glycemia (HbA1c) over time (the time-dependent covariate) on the risk of progression of diabetic retinopathy (eye disease), an interval-censored event-time outcome.  相似文献   

5.
McKeague IW  Tighiouart M 《Biometrics》2000,56(4):1007-1015
This article introduces a new Bayesian approach to the analysis of right-censored survival data. The hazard rate of interest is modeled as a product of conditionally independent stochastic processes corresponding to (1) a baseline hazard function and (2) a regression function representing the temporal influence of the covariates. These processes jump at times that form a time-homogeneous Poisson process and have a pairwise dependency structure for adjacent values. The two processes are assumed to be conditionally independent given their jump times. Features of the posterior distribution, such as the mean covariate effects and survival probabilities (conditional on the covariate), are evaluated using the Metropolis-Hastings-Green algorithm. We illustrate our methodology by an application to nasopharynx cancer survival data.  相似文献   

6.
We propose a method for analysis of recurrent event data using information on previous occurrences of the event as a time-dependent covariate. The focus is on understanding how to analyze the effect of such a dynamic covariate while at the same time ensuring that the effects of treatment and other fixed covariates are unbiasedly estimated. By applying an additive regression model for the intensity of the recurrent events, concepts like direct, indirect and total effects of the fixed covariates may be defined in an analogous way as for traditional path analysis. Theoretical considerations as well as simulations are presented, and a data set on recurrent bladder tumors is used to illustrate the methodology.  相似文献   

7.
Peng L  Fine JP 《Biometrics》2008,64(4):1080-1089
SUMMARY: In clinical trials and observational studies, it is often of scientific interest to evaluate the effects of covariates on complex multistate event probabilities. With discrete covariates, nonparametric tests may be constructed using estimates of the relevant quantities. With continuous covariates, a common approach is to arbitrarily discretize the covariates, which may lead to substantial information loss. Another strategy is to formulate the covariate effects in a regression model. Model-based tests may have either low power or be biased under misspecification. We propose nonparametric tests not requiring arbitrary discretization. The tests involve integrals of estimates continuously indexed by dichotomizations of the covariates. General asymptotic results are derived under null and alternative hypotheses, and verified using empirical process theory in several special cases. The tests are consistent under stochastic ordering, which arises naturally with multistate data. A novel nonparametric measure of covariate effect is studied as a natural byproduct of the testing procedure. Simulation studies and two real data analyses demonstrate the gains of the new testing procedure over those based either on categorization or on regression models.  相似文献   

8.
Regression modeling of semicompeting risks data   总被引:1,自引:0,他引:1  
Peng L  Fine JP 《Biometrics》2007,63(1):96-108
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.  相似文献   

9.
Tian L  Lagakos S 《Biometrics》2006,62(3):821-828
We develop methods for assessing the association between a binary time-dependent covariate process and a failure time endpoint when the former is observed only at a single time point and the latter is right censored, and when the observations are subject to truncation and competing causes of failure. Using a proportional hazards model for the effect of the covariate process on the failure time of interest, we develop an approach utilizing EM algorithm and profile likelihood for estimating the relative risk parameter and cause-specific hazards for failure. The methods are extended to account for other covariates that can influence the time-dependent covariate process and cause-specific risks of failure. We illustrate the methods with data from a recent study on the association between loss of hepatitis B e antigen and the development of hepatocellular carcinoma in a population of chronic carriers of hepatitis B.  相似文献   

10.
The paper deals with discrete-time regression models to analyze multistate-multiepisode failure time data. The covariate process may include fixed and external as well as internal time dependent covariates. The effects of the covariates may differ among different kinds of failures and among successive episodes. A dynamic form of the logistic regression model is investigated and maximum likelihood estimation of the regression coefficients is discussed. In the last section we give an application of the model to the analysis of survival time after breast cancer operation.  相似文献   

11.
Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data analysis that the compound covariate method generally competes well with ridge regression and Lasso methods, both already well-studied methods for predicting survival outcomes with a large number of covariates. Furthermore, we develop a refinement of the compound covariate method by incorporating likelihood information from multivariate Cox models. The new proposal is an adaptive method that borrows information contained in both the univariate and multivariate Cox regression estimators. We show that the new proposal has a theoretical justification from a statistical large sample theory and is naturally interpreted as a shrinkage-type estimator, a popular class of estimators in statistical literature. Two datasets, the primary biliary cirrhosis of the liver data and the non-small-cell lung cancer data, are used for illustration. The proposed method is implemented in R package “compound.Cox” available in CRAN at http://cran.r-project.org/.  相似文献   

12.
Neuhaus JM  Scott AJ  Wild CJ 《Biometrics》2006,62(2):488-494
Case-control studies augmented by the values of responses and covariates from family members allow investigators to study the association between the response and genetics and environment by relating differences in the response directly to within-family differences in covariates. However, existing approaches for case-control family data parameterize covariate effects in terms of the marginal probability of response, the same effects that one estimates from standard case-control studies. This article focuses on the estimation of family-specific covariate effects and develops efficient methods to fit family-specific models such as binary mixed-effects models. We also extend the approach to cover any setting where one has a fully specified model for the vector of responses in a family. We illustrate our approach using data from a case-control family study of brain cancer and consider the use of weighted and conditional likelihood methods as alternatives.  相似文献   

13.
Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional subdistribution hazards model. If the covariate is known at baseline, the model allows for a summarizing assessment in terms of the cumulative incidence function. black Mathematically, the model also allows for including random time-dependent covariates, but practical implementation has remained unclear due to a certain risk set peculiarity. We use the intimate relationship of discrete covariates and multistate models to naturally treat time-dependent covariates within the subdistribution hazards framework. The methodology then straightforwardly translates to real-valued time-dependent covariates. As with classical survival analysis, including time-dependent covariates does not result in a model for probability functions anymore. Nevertheless, the proposed methodology provides a useful synthesis of separate cause-specific hazards analyses. We illustrate this with hospital infection data, where time-dependent covariates and competing risks are essential to the subject research question.  相似文献   

14.
Capture-recapture models were developed to estimate survival using data arising from marking and monitoring wild animals over time. Variation in survival may be explained by incorporating relevant covariates. We propose nonparametric and semiparametric regression methods for estimating survival in capture-recapture models. A fully Bayesian approach using Markov chain Monte Carlo simulations was employed to estimate the model parameters. The work is illustrated by a study of Snow petrels, in which survival probabilities are expressed as nonlinear functions of a climate covariate, using data from a 40-year study on marked individuals, nesting at Petrels Island, Terre Adélie.  相似文献   

15.
Stratified Cox regression models with large number of strata and small stratum size are useful in many settings, including matched case-control family studies. In the presence of measurement error in covariates and a large number of strata, we show that extensions of existing methods fail either to reduce the bias or to correct the bias under nonsymmetric distributions of the true covariate or the error term. We propose a nonparametric correction method for the estimation of regression coefficients, and show that the estimators are asymptotically consistent for the true parameters. Small sample properties are evaluated in a simulation study. The method is illustrated with an analysis of Framingham data.  相似文献   

16.
D P Byar  N Mantel 《Biometrics》1975,31(4):943-947
Interrelationships among three response-time models which incorporate covariate information are explored. The most general of these models is the logistic-exponential in which the log odds of the probability of responding in a fixed interval is assumed to be a linear function of the covariates; this model includes a parameter W for the width of discrete time intervals in which responses occur. As W leads to O this model is equivalent to a continuous time exponential model in which the log hazard is linear in the covariates. As W leads to infininity it is equivalent to a continuous time exponential model in which the hazard itself is a linear function of the covariates. This second model was fitted to the data used in an earlier publication describing the logistic exponential model, and very close agreement of the estimates of the regression coefficients is demonstrated.  相似文献   

17.
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available “indiCAR” model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log‐linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non‐log‐linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth‐indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two‐step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth‐indiCAR through simulation. Our results indicate that the smooth‐indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia.  相似文献   

18.
Bacchetti P  Quale C 《Biometrics》2002,58(2):443-447
We describe a method for extending smooth nonparametric modeling methods to time-to-event data where the event may be known only to lie within a window of time. Maximum penalized likelihood is used to fit a discrete proportional hazards model that also models the baseline hazard, and left-truncation and time-varying covariates are accommodated. The implementation follows generalized additive modeling conventions, allowing both parametric and smooth terms and specifying the amount of smoothness in terms of the effective degrees of freedom. We illustrate the method on a well-known interval-censored data set on time of human immunodeficiency virus infection in a multicenter study of hemophiliacs. The ability to examine time-varying covariates, not available with previous methods, allows detection and modeling of nonproportional hazards and use of a time-varying covariate that fits the data better and is more plausible than a fixed alternative.  相似文献   

19.
In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.  相似文献   

20.
Peng Y  Dear KB 《Biometrics》2000,56(1):237-243
Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号