首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the medial frontal cortex, the supplementary eye field (SEF), supplementary motor area (SMA), and pre-SMA have been implicated in the control of voluntary action, especially during motor sequences or tasks involving rapid choices between competing response plans. However, the precise roles of these areas remain controversial. Here, we study two extremely rare patients with microlesions of the SEF and SMA to demonstrate that these areas are critically involved in unconscious and involuntary motor control. We employed masked-prime stimuli that evoked automatic inhibition in healthy people and control patients with lateral premotor or pre-SMA damage. In contrast, our SEF/SMA patients showed a complete reversal of the normal inhibitory effect--ocular or manual--corresponding to the functional subregion lesioned. These findings imply that the SEF and SMA mediate automatic effector-specific suppression of motor plans. This automatic mechanism may contribute to the participation of these areas in the voluntary control of action.  相似文献   

2.
It has long been appreciated that the posterior parietal cortex plays a role in the processing of saccadic eye movements. Only recently has it been discovered that a small cortical area, the lateral intraparietal area, within this much larger area appears to be specialized for saccadic eye movements. Unlike other cortical areas in the posterior parietal cortex, the lateral intraparietal area has strong anatomical connections to other saccade centers, and its cells have saccade-related responses that begin before the saccades. The lateral intraparietal area appears to be neither a strictly visual nor strictly motor structure; rather it performs visuomotor integration functions including determining the spatial location of saccade targets and forming plans to make eye movements.  相似文献   

3.
The supplementary motor complex consists of the supplementary motor area, the supplementary eye field and the pre-supplementary motor area. In recent years, these areas have come under increasing scrutiny from cognitive neuroscientists, motor physiologists and clinicians because they seem to be crucial for linking cognition to action. However, theories regarding their function vary widely. This Review brings together the data regarding the supplementary motor regions, highlighting outstanding issues and providing new perspectives for understanding their functions.  相似文献   

4.
The cortical connections of the dorsal (PMd) and ventral (PMv) subdivisions of the premotor area (PM, lateral area 6) were studied in four monkeys (Macaca fascicularis) through the use of retrograde tracers. In two animals, tracer was injected ventral to the arcuate sulcus (PMv), in a region from which forelimb movements could be elicited by intracortical microstimulation (ICMS). Tracer injections dorsal to the arcuate sulcus (PMd) were made in two locations. In one animal, tracer was injected caudal to the genu of the arcuate sulcus (in caudal PMd [cPMd], where ICMS was effective in eliciting forelimb movements); in another animal, it was injected rostral to the genu of the arcuate sulcus (in rostral PMd [rPMd], where ICMS was ineffective in eliciting movements). Retrogradely labeled neurons were counted in the ipsilateral hemisphere and located in cytoarchitectonically identified areas of the frontal and parietal lobes. Although both PMv and PMd were found to receive inputs from other motor areas, the prefrontal cortex, and the parietal cortex, there were differences in the topography and the relative strength of projections from these areas.

There were few common inputs to PMv and PMd; only the supplementary eye fields projected to all three areas studied. Interconnections within PMd or PMv appeared to link hindlimb and forelimb representations, and forelimb and face representations; however, connections between PMd and PMv were sparse. Areas cPMd and PMv were found to receive inputs from other motor areas—the primary motor area, the supplementary motor area, and the cingulate motor area—but the topography and strength of projections from these areas varied. Area rPMd was found to receive sparse inputs, if any, from these motor areas. The frontal eye field (area 8a) was found to project to PMv and rPMd, and area 46 was labeled substantially only from rPMd. Parietal projections to PMv were found to originate from a variety of somatosensory and visual areas, including the second somatosensory cortex and related areas in the parietal operculum of the lateral sulcus, as well as areas 5, 7a, and 7b, and the anterior intraparietal area. By contrast, projections to cPMd arose only from area 5. Visual areas 7m and the medial intraparietal area were labeled from rPMd. Relatively more parietal neurons were labeled after tracer injections in PMv than in PMd. Thus, PMv and PMd appear to be parts of separate, parallel networks for movement control.  相似文献   

5.
Schoppik D  Nagel KI  Lisberger SG 《Neuron》2008,58(2):248-260
Neural activity in the frontal eye fields controls smooth pursuit eye movements, but the relationship between single neuron responses, cortical population responses, and eye movements is not well understood. We describe an approach to dynamically link trial-to-trial fluctuations in neural responses to parallel variations in pursuit and demonstrate that individual neurons predict eye velocity fluctuations at particular moments during the course of behavior, while the population of neurons collectively tiles the entire duration of the movement. The analysis also reveals the strength of correlations in the eye movement predictions derived from pairs of simultaneously recorded neurons and suggests a simple model of cortical processing. These findings constrain the primate cortical code for movement, suggesting that either a few neurons are sufficient to drive pursuit at any given time or that many neurons operate collectively at each moment with remarkably little variation added to motor command signals downstream from the cortex.  相似文献   

6.
Controversy surrounds the role of human medial frontal cortex in controlling actions. Although damage to this area leads to severe difficulties in spontaneously initiating actions, the precise mechanisms underlying such "volitional" deficits remain to be established. Previous studies have implicated the medial frontal cortex in conflict monitoring and the control of voluntary action, suggesting that these key processes are functionally related or share neural substrates. Here, we combine a novel behavioral paradigm with functional imaging of the oculomotor system to reveal, for the first time, a functional subdivision of the pre-supplementary motor area (pre-SMA) into anatomically distinct areas that respond exclusively to either volition or conflict. We also demonstrate that activity in the supplementary eye field (SEF) distinguishes between success and failure in changing voluntary action plans during conflict, suggesting a role for the SEF in implementing the resolution of conflicting actions. We propose a functional architecture of human medial frontal cortex that incorporates the generation of action plans and the resolution of conflict.  相似文献   

7.
Functional anatomical studies indicate that a set of neural signals in parietal and frontal cortex mediates the covert allocation of attention to visual locations across a wide variety of visual tasks. This frontoparietal network includes areas, such as the frontal eye field and supplementary eye field. This anatomical overlap suggests that shifts of attention to visual locations of objects recruit areas involved in oculomotor programming and execution. Finally, the fronto-parietal network may be the source of spatial attentional modulations in the ventral visual system during object recognition or discrimination.  相似文献   

8.

Background

In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear.

Methodology/Principal Findings

We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively.

Conclusions

The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.  相似文献   

9.
The functional organization of adult cerebral cortex is characterized by the presence of highly ordered sensory and motor maps. Despite their archetypical organization, the maps maintain the capacity to rapidly reorganize, suggesting that the neural circuitry underlying cortical representations is inherently plastic. Here we show that the circuitry supporting motor maps is dependent upon continued protein synthesis. Injections of two different protein synthesis inhibitors into adult rat forelimb motor cortex caused an immediate and enduring loss of movement representations. The disappearance of the motor map was accompanied by a significant reduction in synapse number, synapse size, and cortical field potentials and caused skilled forelimb movement impairments. Further, motor skill training led to a reappearance of movement representations. We propose that the circuitry of adult motor cortex is perpetually labile and requires continued protein synthesis in order to maintain its functional organization.  相似文献   

10.
The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures.  相似文献   

11.
1. Experiments were performed to investigate the effects of cortical lesions on convulsive behaviour. Rats were lesioned in the left motor or sensory cortex by aspirating cortical tissue 2 to 3 months prior to the elicitation of convulsions. Convulsions were induced in the awake rats by the GABA antagonist Na-penicillin (Na-PCN) which was applied into the superficial layer of the foreleg field of their right motor cortex. Convulsive activity was recorded by means of the EEG. 2. The time courses of convulsive cortical activity were similar in the animals without or with a cortical lesion. Generalized seizures belonged to the tonic-clonic type in both intact and lesioned rats. 3. The early period of convulsive activity was described by the time to the onset (latency) of the first convulsive potential, jerk and seizure, and by the mean repetition rate of jerks during the first ten minutes, and the duration of the first generalized seizure. None of these parameters was significantly affected by a cortical lesion. 4. The median duration of the convulsive activity in intact animals was 162 min. In rats with a lesion in the sensory cortex it raised to more than 540 min while a lesion of the motor cortex increased the median duration to more than 273 min. The differences between intact and lesioned rats were significant (p less than 0.01 and p = 0.05, respectively). 5. The median time to the onset of the last generalized seizure in intact rats corresponded to 92 min with respect to the time of Na-PCN application. In rats with a lesion of the sensory cortex the last seizure was generated 433 min and in animals with a lesion of the motor cortex 167 min after Na-PCN treatment of the motor cortex of one side. This increase of latency of the last seizure was significant for the rats with a lesioned sensory area (p less than 0.02) or motor area (p = 0.05) compared to that of the intact rats. Additionally, the number of generalized seizures was significantly (p less than 0.01) increased by both groups of rats with a lesion of the motor or sensory cortex. 6. It is suggested that a substantial lesion of the cortex decreases predominantly the intrinsic cortical inhibition thus destabilizing brain function. This destabilizing effect becomes pronounced under the condition of superimposed suppression of the GABAergic cortical component. It is concluded that the intrinsic cortical inhibitory mechanism which in the intact brain acts against hyperexcitation and prevents the development of neuronal synchronization, i.e. the formation of seizures, becomes less effective in performing this task once an abnormal brain activation has developed.  相似文献   

12.
PG Middlebrooks  MA Sommer 《Neuron》2012,75(3):517-530
Humans are metacognitive: they monitor and control their cognition. Our hypothesis was that neuronal correlates of metacognition reside in the same brain areas responsible for cognition, including frontal cortex. Recent work demonstrated that nonhuman primates are capable of metacognition, so we recorded from single neurons in the frontal eye field, dorsolateral prefrontal cortex, and supplementary eye field of monkeys (Macaca mulatta) that performed a metacognitive visual-oculomotor task. The animals made a decision and reported it with a saccade, but received no immediate reward or feedback. Instead, they had to monitor their decision and bet whether it was correct. Activity was correlated with decisions and bets in all three brain areas, but putative metacognitive activity that linked decisions to appropriate bets occurred exclusively in the SEF. Our results offer a survey of neuronal correlates of metacognition and implicate the SEF in linking cognitive functions over short periods of time.  相似文献   

13.
A paradoxical role for inhibition in initiation   总被引:1,自引:0,他引:1  
Rushworth MF  Taylor PC 《Neuron》2007,54(5):669-670
Subliminal stimuli, of which subjects are unaware, affect movements made to subsequent visible cues. Sumner and colleagues in this issue of Neuron show that restricted supplementary motor and eye field lesions compromise voluntary control of action because they disrupt the normal unconscious and automatic inhibition of alternative movements partially activated by subliminal stimuli.  相似文献   

14.
This paper reviews the involvement of the parietal cortex and the hippocampus in three kinds of spatial memory tasks which all require a memory of a previously experienced movement in space. The first task compared, by means of positron emission tomography (PET) scan techniques, the production, in darkness, of self-paced saccades (SAC) with the reproduction, in darkness, of a previously learned sequence of saccades to visual targets (SEQ). The results show that a bilateral increase of activity was seen in the depth of the intraparietal sulcus and the medial superior parietal cortex (superior parietal gyrus and precuneus) together with the frontal sulcus but only in the SEQ task, which involved memory of the previously seen targets and possibly also motor memory. The second task is the vestibular memory contingent task, which requires that the subject makes, in darkness, a saccade to the remembered position of a visual target after a passively imposed whole-body rotation. Deficits in this task, which involves vestibular memory, were found predominantly in patients with focal vascular lesions in the parieto-insular (vestibular) cortex, the supplementary motor area-supplementary eye field area, and the prefrontal cortex. The third task requires mental navigation from the memory of a previously learned route in a real environment (the city of Orsay in France). A PET scan study has revealed that when subjects were asked to remember visual landmarks there was a bilateral activation of the middle hippocampal regions, left inferior temporal gyrus, left hippocampal regions, precentral gyrus and posterior cingulate gyrus. If the subjects were asked to remember the route, and their movements along this route, bilateral activation of the dorsolateral cortex, posterior hippocampal areas, posterior cingulate gyrus, supplementary motor areas, right middle hippocampal areas, left precuneus, middle occipital gyrus, fusiform gyrus and lateral premotor area was found. Subtraction between the two conditions reduced the activated areas to the left hippocampus, precuneus and insula. These data suggest that the hippocampus and parietal cortex are both involved in the dynamic aspects of spatial memory, for which the name ''topokinetic memory'' is proposed. These dynamic aspects could both overlap and be different from those involved in the cartographic and static aspects of ''topographic'' memory.  相似文献   

15.
This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand) but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions.  相似文献   

16.

Background

Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry.

Methodology/Principal Findings

In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS) to transiently disrupt neuronal activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the ∼50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention.

Conclusions/Significance

Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned.  相似文献   

17.
Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively. We found electromyographical recordings, an efference-copy proxy, to predict activity in primary somatosensory regions, in particular Brodmann Area (BA) 2. Partial correlation analyses confirmed that brain activity in cortical structures associated with motor control (premotor and supplementary motor cortices, the parietal area PF and the cerebellum) predicts brain activity in BA2 without being entirely mediated by activity in early somatosensory (BA3b) cortex. Our study therefore provides valuable empirical evidence for efference-copy models of motor control, and shows that signals in BA2 can indeed reflect an input from motor cortices and suggests that we should interpret activations in BA2 as evidence for somatosensory-motor rather than somatosensory coding alone.  相似文献   

18.
Single-pulse magnetic coil stimulation (Cadwell MES 10) over the cranium induces without pain an electric pulse in the underlying cerebral cortex. Stimulation over the motor cortex can elicit a muscle twitch. In 10 subjects, we tested whether motor cortical stimulation could also elicit skin sympathetic nerve activity (SSNA; n = 8) and muscle sympathetic nerve activity (MSNA; n = 5) in the peroneal nerve. Focal motor cortical stimulation predictably elicited bursts of SSNA but not MSNA; with successive stimuli, the SSNA responses did not readily extinguish (94% of discharges to the motor cortex evoked SSNA responses) and had predictable latencies [739 +/- 33 (SE) to 895 +/- 13 ms]. The SSNA responses were similar after stimulation of dominant and nondominant sides. Focal stimulation posterior to the motor cortex elicited extinguishable SSNA responses. In three of six subjects, anterior cortical stimulation evoked SSNA responses similar to those seen with motor cortex stimulation but without detectable movement; in the other subjects, anterior stimulation evoked less SSNA discharge than that seen with motor cortex stimulation. Contrasting with motor cortical stimulation, evoked SSNA responses were more readily extinguished with 1) peripheral stimulation that directly elicited forearm muscle activation accompanied by electromyograms similar to those with motor cortical stimulation; 2) auditory stimulation by the click of the energized coil when off the head; and 3) in preliminary experiments, finger afferent stimulation sufficient to cause tingling. Our findings are consistent with the hypothesis that motor cortex stimulation can cause activation of both alpha-motoneurons and SSNA.  相似文献   

19.
Motor impairment is the most relevant clinical feature in Parkinson''s disease (PD). Functional imaging studies on motor impairment in PD have revealed changes in the cortical motor circuits, with particular involvement of the fronto-striatal network. The aim of this study was to assess brain activations during the performance of three different motor exercises, characterized by progressive complexity, using a functional fMRI multiple block paradigm, in PD patients and matched control subjects. Unlike from single-task comparisons, multi-task comparisons between similar exercises allowed to analyse brain areas involved in motor complexity planning and execution. Our results showed that in the single-task comparisons the involvement of primary and secondary motor areas was observed, consistent with previous findings based on similar paradigms. Most notably, in the multi-task comparisons a greater activation of supplementary motor area and posterior parietal cortex in PD patients, compared with controls, was observed. Furthermore, PD patients, compared with controls, had a lower activation of the basal ganglia and limbic structures, presumably leading to the impairment in the higher levels of motor control, including complexity planning and execution. The findings suggest that in PD patients occur both compensatory mechanisms and loss of efficiency and provide further insight into the pathophysiological role of distinct cortical and subcortical areas in motor dysfunction.  相似文献   

20.
Cortical field potentials have been used for decades in neurophysiological studies to probe spatio-temporal activity patterns of local populations of neurons. Recently, however, interest in these signals was spurred as they were proposed as potential control signals for neuronal motor prostheses, i.e., for devices fit to record and decode brain activity to restore motor functions in paralyzed patients. Little is known, however, about the functional significance of these cortical field potentials. Here we compared information about arm movement direction in two types of movement related cortical field potentials, obtained during a four direction center-out arm reaching paradigm: local field potentials (LFPs) recorded with intracortical micro-electrodes from monkey motor cortex, and epicortical field potentials (EFPs) recorded with macro-electrode arrays subdurally implanted on the surface of the human cerebral cortex. While monkey LFPs showed a typical sequence of positive and negative potential peaks, an initial negative peak was the most salient feature of human EFPs. Individual contralateral LFPs from the monkey motor cortex carried approximately twice as much decoded information (DI) about arm movement direction (median 0.27 bit) as did individual EFPs from the contralateral hand/arm area of primary motor cortex in humans (median 0.12 bit). This relation was similar to the relation between median peak signal-to-noise ratios for directional modulation of movement related potentials (MRPs) of both types of signals. We discuss possible reasons for the observed differences, amongst them epi- vs. intracortical recording and the different electrode dimensions used to measure EFPs and LFPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号