首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

To date, the earliest stage at which the orientation of the anterior-posterior axis in the mouse embryo is distinguishable by asymmetric gene expression is shortly after E5.5. At E5.5, prospective anterior markers are expressed at the distal tip of the embryo, whereas prospective posterior markers are expressed more proximally, close to the boundary with the extraembryonic region.  相似文献   

2.
BACKGROUND: It is generally assumed that the migration of anterior visceral endoderm (AVE) cells from a distal to a proximal position at embryonic day (E)5.5 breaks the radial symmetry of the mouse embryo, marks anterior, and conditions the formation of the primitive streak on the opposite side at E6.5. Transverse sections of a gastrulating mouse embryo fit within the outline of an ellipse, with the primitive streak positioned at one end of its long axis. How the establishment of anterior-posterior (AP) polarity relates to the morphology of the postimplantation embryo is, however, unclear. RESULTS: Transverse sections of prestreak E6.0 embryos also reveal an elliptical outline, but the AP axis, defined by molecular markers, tends to be perpendicular to the long axis of the ellipse. Subsequently, the relative orientations of the AP axis and of the long axis change so that when gastrulation begins, they are closer to being parallel, albeit not exactly aligned. As a result, most embryos briefly lose their bilateral symmetry when the primitive streak starts forming in the epiblast. CONCLUSIONS: The change in the orientation of the AP axis is only apparent and results from a dramatic remodeling of the whole epiblast, in which cell migrations take no part. These results reveal a level of regulation and plasticity so far unsuspected in the mouse gastrula.  相似文献   

3.
During development, the growth of the embryo must be coupled to its patterning to ensure correct and timely morphogenesis. In the mouse embryo, migration of the anterior visceral endoderm (AVE) to the prospective anterior establishes the anterior-posterior (A-P) axis. By analysing the distribution of cells in S phase, M phase and G2 from the time just prior to the migration of the AVE until 18 hours after its movement, we show that there is no evidence for differential proliferation along the A-P axis of the mouse embryo. Rather, we have identified that as AVE movements are being initiated, the epiblast proliferates at a much higher rate than the visceral endoderm. We show that these high levels of proliferation in the epiblast are dependent on Nodal signalling and are required for A-P establishment, as blocking cell division in the epiblast inhibits AVE migration. Interestingly, inhibition of migration by blocking proliferation can be rescued by Dkk1. This suggests that the high levels of epiblast proliferation function to move the prospective AVE away from signals that are inhibitory to its migration. The finding that initiation of AVE movements requires a certain level of proliferation in the epiblast provides a mechanism whereby A-P axis development is coordinated with embryonic growth.  相似文献   

4.
Reciprocal signals from embryonic and extra-embryonic tissues pattern the embryo in proximal-distal (PD) and anterior-posterior (AP) fashion. Here we have analyzed three gene trap mutations of Sall4, of which one (Sall4-1a) led to a hypomorphic and recessive phenotype, demonstrating that Sall4-1a has yet undescribed extra-embryonic and embryonic functions in regulating PD and AP axis formation. In Sall4-1a mutants the self-maintaining autoregulatory interaction between Bmp4, Nodal and Wnt, which determines the PD axis was disrupted because of defects in the extra-embryonic visceral endoderm. More severely, two distinct Sall4 gene-trap mutants (Sall4-1a,b), resembling null mutants, failed to initiate Bmp4 expression in the extra-embryonic ectoderm and Nodal in the epiblast and were therefore unable to initiate PD axis formation. Tetraploid rescue underlined the extra-embryonic nature of the Sall4-1a phenotype and revealed a further embryonic function in Wnt/beta-catenin signaling to elongate the AP axis during gastrulation. This observation was supported through genetic interaction with beta-catenin mutants, since compound heterozygous mutants recapitulated the defects of Wnt3a mutants in posterior development.  相似文献   

5.
6.
7.
Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.  相似文献   

8.
The diverse morphologies among vertebrate species stems from the evolution of a basic body plan that is constituted by a spatially organized ensemble of tissue lineage progenitors. At gastrulation, this body plan is established through a coordinated morphogenetic process and the delineation of tissue lineages that are driven by the activity of the genome. To explore the molecular mechanisms, in a comprehensive context, it is imperative to glean an understanding of the region-and population-specific genetic activity underpinning this fundamental developmental process. In this review, we outline the recent progress and the future directions in studies of genome activity for the regulation of mouse embryogenesis at gastrulation.  相似文献   

9.
The prospective fate of cells in the primitive streak was examined at early, mid and late stages of mouse gastrula development to determine the order of allocation of primitive streak cells to the mesoderm of the extraembryonic membranes and to the fetal tissues. At the early-streak stage, primitive streak cells contribute predominantly to tissues of the extraembryonic mesoderm as previously found. However, a surprising observation is that the erythropoietic precursors of the yolk sac emerge earlier than the bulk of the vitelline endothelium, which is formed continuously throughout gastrula development. This may suggest that the erythropoietic and the endothelial cell lineages may arise independently of one another. Furthermore, the extraembryonic mesoderm that is localized to the anterior and chorionic side of the yolk sac is recruited ahead of that destined for the posterior and amnionic side. For the mesodermal derivatives in the embryo, those destined for the rostral structures such as heart and forebrain mesoderm ingress through the primitive streak early during a narrow window of development. They are then followed by those for the rest of the cranial mesoderm and lastly the paraxial and lateral mesoderm of the trunk. Results of this study, which represent snapshots of the types of precursor cells in the primitive streak, have provided a better delineation of the timing of allocation of the various mesodermal lineages to specific compartments in the extraembryonic membranes and different locations in the embryonic anteroposterior axis.  相似文献   

10.
11.
The influence of cell division order on the establishment of the embryonic-abembryonic axis (EA axis) of the mouse embryo was investigated. Aggregate embryos were constructed in which a labelled cell (or pair of cells) was combined with a group of unlabelled cells all of which were up to one cell cycle earlier or later in their progress through development to the blastocyst stage. The aggregates were cultured first to the nascent blastocyst stage and then to the expanded blastocyst stage. The positions of the progeny of the labelled cells in relation to the nascent blastocoel and to the orientation of the embryonic-abembryonic axis were recorded. It was concluded that cell division order does influence the establishment of the EA axis, early dividing cells tending to be associated with the nascent blastocoel and the site of the nascent blastocoel tending to mark the site of the abembryonic pole. However, the influence of division order was diminished by a requirement for intercellular cooperation during blastocoel formation and by a counteracting influence of division order arising from its effects on the allocation of cells to the inner cell mass.  相似文献   

12.
Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.  相似文献   

13.
The Drosophila bithorax complex (BX-C) controls segmental development by selectively deploying three protein products, Ubx, abd-A and Abd-B, within specific segments along the body axis. Expression of these products within any one segment (or, more accurately, parasegment) is affected by mutations clustered in a particular region of the BX-C. The regulatory regions defined by this genetic analysis span 20-50 kb and there is one region for each segmental unit. Here we describe regulatory elements from several of these regions, identified by fusion to a Ubx-lacZ gene and analysis in germline transformants. A small DNA fragment from the abx region programs expression with an anterior boundary in the second thoracic segment (parasegment 5). This anterior limit is appropriate, since the abx region normally controls Ubx in parasegment 5. Other regulatory regions of the BX-C that control development of parasegments 6, 7 or 8 contain similar regulatory elements that program expression with anterior limits in parasegments 6, 7 or 8, respectively. These experiments define a class of BX-C regulatory elements that control expression along the anterior-posterior axis. The early appearance of the lacZ patterns in embryos suggests a role for these elements in the initial activation of expression from the BX-C.  相似文献   

14.
Anterior-posterior polarity of the mouse embryo has been thought to be established when distal visceral endoderm (DVE) at embryonic day (E) 5.5 migrates toward the future anterior side to form anterior visceral endoderm (AVE). Lefty1, a marker of DVE and AVE, is asymmetrically expressed in implanting mouse embryos. We now show that Lefty1 is expressed first in a subset of epiblast progenitor cells and then in a subset of primitive endoderm progenitors. Genetic fate mapping indicated that the latter cells are destined to become DVE. In contrast to the accepted notion, however, AVE is not derived from DVE but is newly formed after E5.5 from Lefty1(-) visceral endoderm cells that move to the distal tip. Concomitant with DVE migration, all visceral endoderm cells in the embryonic region undergo global movement. In embryos subjected to genetic ablation of Lefty1-expressing DVE cells, AVE was formed de novo but the visceral endoderm including the newly formed AVE failed to migrate, indicating that DVE guides the migration of AVE by initiating the global movement of visceral endoderm cells. Future anterior-posterior polarity is thus already determined by Lefty1(+) blastomeres in the implanting blastocyst.  相似文献   

15.
Prior to gastrulation the mouse embryo exists as a symmetrical cylinder consisting of three tissue layers. Positioning of the future anterior-posterior axis of the embryo occurs through coordinated cell movements that rotate a pre-existing proximal-distal (P-D) axis. Overt axis formation becomes evident when a discrete population of proximal epiblast cells become induced to form mesoderm, initiating primitive streak formation and marking the posterior side of the embryo. Over the next 12-24 h the primitive streak gradually elongates along the posterior side of the epiblast to reach the distal tip. The most anterior streak cells comprise the 'organizer' region and include the precursors of the so-called 'axial mesendoderm', namely the anterior definitive endoderm and prechordal plate mesoderm, as well as those cells that give rise to the morphologically patent node. Signalling pathways controlled by the transforming growth factor-beta ligand nodal are involved in orchestrating the process of axis formation. Embryos lacking nodal activity arrest development before gastrulation, reflecting an essential role for nodal in establishing P-D polarity by generating and maintaining the molecular pattern within the epiblast, extraembryonic ectoderm and the visceral endoderm. Using a genetic strategy to manipulate temporal and spatial domains of nodal expression reveals that the nodal pathway is also instrumental in controlling both the morphogenetic movements required for orientation of the final axis and for specification of the axial mesendoderm progenitors.  相似文献   

16.
The isolated upper marginal zone from the initial stage ofCynops gastrulation is not yet determined to form the dorsal axis mesoderm: notochord and muscle. In this experiment, we will indicate where the dorsal mesoderm-inducing activity is localized in the very early gastrula, and what is an important event for specification of the dorsal axis mesoderm during gastrulation. Recombination experiments showed that dorsal mesoderm-inducing activity was localized definitively in the endodermal epithelium (EE) of the lower marginal zone, with a dorso-ventral gradient; and the EE itself differentiated into endodermal tissues, mainly pharyngeal endoderm. Nevertheless, when dorsal EE alone was transplanted into the ventral region, a secondary axis with dorsal mesoderm was barely formed. However, when dorsal EE was transplanted with the bottle cells which by themselves were incapable of mesoderm induction, a second axis with well-developed dorsal mesoderm was observed. When the animal half with the lower marginal zone was rotated 180° and recombined with the vegetal half, most of the rotated embryos formed only one dorsal axis at the primary blastopore side. The present results suggest that there are at least two essential processes in dorsal axis formation: mesoderm induction of the upper marginal zone by endodermal epithelium of the lower marginal zone, and dorsalization of the upper dorsal marginal zone evoked during involution.  相似文献   

17.
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3' and 5' Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.  相似文献   

18.
The left-right axis in the mouse: from origin to morphology   总被引:1,自引:0,他引:1  
The past decade or so has seen rapid progress in our understanding of how left-right (LR) asymmetry is generated in vertebrate embryos. However, many important questions about this process remain unanswered. Although a leftward flow of extra-embryonic fluid in the node cavity (nodal flow) is likely to be the symmetry-breaking event, at least in the mouse embryo, it is not yet known how this flow functions or how the asymmetric signal generated in the node is transferred to the lateral plate. The final step in left-right patterning - translation of the asymmetric signal into morphology - is also little understood.  相似文献   

19.
Nicotinamide adenine dinucleotide (NAD) content was found to decrease in mouse embryos during cleavage and to increase again at the blastocyst stage. The first enzyme involved in biosynthesis of NAD from nicotinamide is nicotinamide mononucleotide (NMN)-pyrophosphorylase. No such enzymatic activity was found in the embryos, but NAD-glycohydrolase activity was relatively high 24–48 hours after conception. Enzyme activity decreased in the blastocyst. The results are relevant to understanding the regulation of metabolism in preimplantation embryos.  相似文献   

20.
The mouse embryo generates multiple cell lineages, as well as its future body axes in the early phase of its development. The early cell fate decisions lead to the generation of three lineages in the pre-implantation embryo: the epiblast, the primitive endoderm and the trophectoderm. Shortly after implantation, the anterior-posterior axis is firmly established. Recent studies have provided a better understanding of how the earliest cell fate decisions are regulated in the pre-implantation embryo, and how and when the body axes are established in the pregastrulation embryo. In this review, we address the timing of the first cell fate decisions and of the establishment of embryonic polarity, and we ask how far back one can trace their origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号