首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Microcystis aeruginosa is a common form of cyanobacteria (blue‐green algae) capable of forming toxic heptapeptides (microcystins) that can cause illness or death. Occasionally, blooms of cyanobacteria have caused toxic fish‐kills in catfish production ponds. We have developed a PCR test that will detect the presence of microcystin‐producing cyanobacteria. Microcystin producers are detected by the presence of the microcystin peptide synthetase B gene (an obligate enzyme in the microcystin pathway), which appears to be present only in toxin‐producing cyanobacteria. These PCR amplifications can be performed in multiplex using purified DNA from pond waters or by two‐stage amplification from native water samples. A synoptic survey of 476 channel catfish production ponds from four states in the southeastern United States revealed that 31% of the ponds have the genetic potential to produce microcystins by toxic algae.  相似文献   

2.
Biomanipulation measures in lakes, taken to diminish algal blooms, have mainly been restricted to the reduction of zooplanktivorous fish with the aim to stimulate the grazing pressure by native filter feeders such as Daphnia. However, larger filter feeders like the exotic zebra mussel, Dreissena polymorpha, have been suggested as an optional tool because of their high filtering capacity. We compared grazing by two filter feeders, D. polymorpha and Daphnia galeata, offered seston from Lake IJsselmeer, the Netherlands in two consecutive years: 2002 and 2003. The seston in both years was dominated by the colony-forming cyanobacterium Microcystis aeruginosa. The grazing studies were performed under controlled conditions in the laboratory and samples were analyzed on a flow cytometer, making it possible to quantify grazing on different seston components and size fractions, including cyanobacteria, other phytoplankton (green algae, diatoms, etc.), and detritus. No differences in clearance rates, on a per weight basis, were found between the two grazer species. The clearance rate on cyanobacteria (especially <20 μm) was lower in 2003 than in 2002. In 2003, the microcystin concentration of cyanobacteria was higher than in 2002, suggesting that the observed lower clearance rate in 2003 was due to the enhanced toxin content of the cyanobacteria. Zebra mussels, although indiscriminately filtering all seston groups out of the water, positively selected for phytoplankton in their mantle cavity, irrespective of its toxicity, and rejected detritus. Since no differences in clearance rates were found between the two grazer species, we conclude that for biomanipulation purposes of shallow lakes, native species like the daphnids should be preferred over exotic species like zebra mussels. When the seston is dominated by phytoplankton that cannot be filtered out of the water column by Daphnia, however, the use of zebra mussels may be considered. Care should be taken, however, in the choice of the lakes since the mussels may have severe ecological and economic impacts.  相似文献   

3.
The impact of the toxic cyanobacterium Microcystis aeruginosa on estuarine food web production in San Francisco Estuary is unknown. It is hypothesized that Microcystis contributed to a recent decline in pelagic organisms directly through its toxicity or indirectly through its impact on the food web after 1999. In order to evaluate this hypothesis, phytoplankton, cyanobacteria, zooplankton, and fish were collected biweekly at stations throughout the estuary in 2005. Concentrations of the tumor-promoting Microcystis toxin, microcystin, were measured in water, plankton, zooplankton, and fish by a protein phosphatase inhibition assay, and fish health was assessed by histopathology. Microcystis abundance was elevated in the surface layer of the western and central delta and reached a maximum of 32 × 109 cells l−1 at Old River in August. Its distribution across the estuary was correlated with a suite of phytoplankton and cyanobacteria species in the surface layer and 1 m depth including Aphanizomenon spp., Aulacoseira granulata, Bacillaria paradoxa, Rhodomonas spp., and Cryptomonas spp. Shifts in the phytoplankton community composition coincided with a decrease in the percentage of diatom and green algal carbon and increase in the percentage of cryptophyte carbon at 1 m depth. Maximum calanoid and cyclopoid copepod carbon coincided with elevated Microcystis abundance, but it was accompanied by a low cladocera to calanoid copepod ratio. Total microcystins were present at all levels of the food web and the greater total microcystins concentration in striped bass than their prey suggested toxins accumulated at higher trophic levels. Histopathology of fish liver tissue suggested the health of two common fish in the estuary, striped bass (Morone saxatilis), and Mississippi silversides (Menidia audens), was impacted by tumor-promoting substances, particularly at stations where total microcystins concentration was elevated. This study suggests that even at low abundance, Microcystis may impact estuarine fishery production through toxic and food web impacts at multiple trophic levels.  相似文献   

4.
Zooplankton can influence the phytoplankton community through preferential grazing. In turn, nuisance cyanobacteria may affect zooplankton community structure by allowing certain species to out-compete others. We examined zooplankton-phytoplankton interactions, micro-zooplankton (< 200 m) grazing, and biochemical components of the seston in the St. Johns River System (SJR), Florida in the presence and absence of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii. We tested whether this cyanobacterium would cause a decrease in the size structure of the zooplankton community and postulated a resultant decline in the metabolic energy and carbon available to higher consumers (i.e. fish). When numbers of C. raciborskii were low or undetectable, zooplankton were more diverse and were comprised of larger species. Rotifers were the dominant zooplankton, and their numbers relative to other zooplankton increased as C. raciborskii concentrations increased. Micro-zooplankton grazing was higher in times of C. raciborskii abundance, suggesting competitive and predatory exclusion by larger zooplankton in times of higher phytoplankton diversity. Total caloric content of the seston was higher in times of C. raciborskii abundance. However, essential fatty acids and phosphorus may be lacking in the seston, or nutrients may potentially be sequestered by the cyanobacteria and remain as organic matter in the water column. In such cases, higher trophic levels would not be able to obtain optimal energy requirements. Overall, there was a greater impact of micro-grazers on phytoplankton in the presence of C. raciborskii and apparent negative effects on the larger zooplankton species, suggesting a potential for changes in zooplankton and higher trophic level community structure.  相似文献   

5.
Cyanobacterial chemical warfare affects zooplankton community composition   总被引:5,自引:0,他引:5  
1. Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems that may be affected by algal toxins. 2. In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3. Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders, such as cyclopoid copepods, Bosmina and rotifers. 4. In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5. We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ‘sandwiched’ between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes generally comprise small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems.  相似文献   

6.
Although theoretical foodweb models predict the presence of only three to four trophic categories, estimation of “potential” vertical foodweb structure from species lists and inferred feeding interactions suggest that as many as 7 trophic categories can occur in the pelagic foodwebs of North American glaciated lakes. A compilation of data on the nitrogen isotopic composition of zooplankton from 46 Canadian Shield lakes suggested the average existence of one “realized” trophic category in addition to that of filter-feeding, herbivorous cladocerans. When phytoplankton, planktivorous invertebrates, and plantivorous and piscivorous fish are included, the vertical foodweb structure in the pelagic zones of these lakes are greater than those hypothesized from some theoretical models.  相似文献   

7.
The active release of microcystins in cyanobacterium Microcystis aeruginosa (Kützing) Kützing, strain BCCUSP232 was confirmed. The microcystin release is controlled by an endogenous rhythm, pointing to a biosynthetic pattern of toxins in cyanobacteria. Proofing tests for this active release were carried out by experiments at two independent 24 h cycles, light : dark and continuous light (12:12 h) along the exponential growing phase. Cultivation samples at light, temperature and photoperiod controlled conditions were collected in 2‐h intervals. Microcystin concentrations from the pellet aliquots (intracellular microcystin per cell‐quota –IMC) and supernatant (extracellular microcystin per equivalent cell‐quota – EMC) were quantified with enzyme linked immunosorbent assay. The IMC concentrations showed increases and decreases in both cycles. Decreases of IMC clearly demonstrate that the toxin was actively released to the surrounding medium and not by cell lysis. The total microcystins concentrations (IMC and EMC) between the light : dark and continuous light cycles presented similar variations between the same hours.  相似文献   

8.
Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, driven by agricultural eutrophication (in eutrophic Lake Köyliöjärvi) or global warming (in mesotrophic Lake Pyhäjärvi), influence the biomass and structure of phytoplankton, zooplankton, and fish communities. In terms of the nutritional value of food web components, we evaluated changes in the ω‐3 and ω‐6 polyunsaturated fatty acids (PUFA) of phytoplankton and consumers at different trophic levels. Meanwhile, the lakes did not differ in their biomasses of phytoplankton, zooplankton, and fish communities, lake trophic status greatly influenced the community structures. The eutrophic lake, with agricultural eutrophication, had cyanobacteria bloom throughout the summer months whereas cyanobacteria were abundant only occasionally in the mesotrophic lake, mainly in early summer. Phytoplankton community differences at genus level resulted in higher arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content of seston in the mesotrophic than in the eutrophic lake. This was also reflected in the EPA and DHA content of herbivorous zooplankton (Daphnia and Bosmina) despite more efficient trophic retention of these biomolecules in a eutrophic lake than in the mesotrophic lake zooplankton. Planktivorous juvenile fish (perch and roach) in a eutrophic lake overcame the lower availability of DHA in their prey by more efficient trophic retention and biosynthesis from the precursors. However, the most efficient trophic retention of DHA was found with benthivorous perch which prey contained only a low amount of DHA. Long‐term cyanobacterial blooming decreased the nutritional quality of piscivorous perch; however, the difference was much less than previously anticipated. Our result shows that long‐term cyanobacteria blooming impacts the structure of plankton and fish communities and lowers the nutritional quality of seston and zooplankton, which, however, is mitigated at upper trophic levels.  相似文献   

9.
Microcystins (MCs) have a toxic effect on crustacean zooplankton in the laboratory, but there is little or no unequivocal evidence in the literature of their lethal effects on crustacean zooplankton in the field. We used the natural microcystins extracted from Microcystis spp. to test if they could cause any negative effects on crustacean zooplankton. We conducted three experiments in enclosures with water from Lake Taihu, China, and microcystins derived by extraction from Microcystis spp. collected from the lake when the species was in bloom conditions. Initial concentrations of extracellular microcystins (EMCs = MC-RR + MC-LR + MC-YR) ranged from 9.7 to 44.9 μg/L in treatments with microcystin addition. Microcystin concentrations sharply decreased on second day in all the three experiments. EMCs at the end of the experiments varied from only 2.7 to 14.2 % of the levels at the start of the experiments. The dominant species of crustacean zooplankton in the lake were Bosmina longirotris, Ceriodaphnia cornuta, Mesocyclops spp., Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus. ANOVA analysis showed that the density and biomass of cladoceran and copepod did not significantly differ between treatments with microcystin addition and controls. Our results indicate that microcystins derived from lysing Microcystis do not cause any negative effects on crustacean zooplankton.  相似文献   

10.
The cyanobacterial hepatotoxins, microcystin and nodularin, are produced by a wide range of cyanobacteria. Microcystin production has been reported in the four cyanobacterial orders: Oscillatoriales, Chroococcales, Stigonematales, and Nostocales. The production of nodularin is a distinct characteristic of the Nostocales genus Nodularia. A single rapid method is needed to reliably detect cyanobacteria that are potentially capable of producing these hepatotoxins. To this end, a PCR was designed to detect all potential microcystin and nodularin-producing cyanobacteria from laboratory cultures as well as in harmful algal blooms. The aminotransferase (AMT) domain, which is located on the modules mcyE and ndaF of the microcystin and nodularin synthetase enzyme complexes, respectively, was chosen as the target sequence because of its essential function in the synthesis of all microcystins as well as nodularins. Using the described PCR, it was possible to amplify a 472 bp PCR product from the AMT domains of all tested hepatotoxic species and bloom samples. Sequence data provided further insight into the evolution of the microcystin and nodularin synthetases through bioinformatic analyses of the AMT in microcystin and nodularin synthetases, with congruence between the evolution of 16S rRNA and the AMT domain.  相似文献   

11.
The contamination of lettuce (Lactuca sativa L.) by water‐borne crude extracts of the cyanobacterium microcystin‐producing Microcystis aeruginosa (Kützing) Kützing was investigated. The aim of the study was to determine whether bioaccumulation of microcystins occurs in lettuce foliar tissue when sprayed with solutions containing microcystins at concentrations observed in aquatic systems (0.62 to 12.5 μg · L?1). Microcystins were found in lettuce foliar tissues (8.31 to 177.8 μg per Kg of fresh weight) at all concentrations of crude extracts. Spraying with water containing microcystins and cyanobacteria may contaminate lettuce at levels higher than the daily intake of microcystins recommended by the World Health Organization (WHO), underscoring the need to monitor such food exposure pathways by public authorities.  相似文献   

12.
Dryland rivers associated with arid and semi-arid land areas offer an opportunity to explore food web concepts and models of energy sources in systems that experience unpredictable flooding and long dry spells. This study investigated the sources of energy supporting three species of fish feeding at different trophic levels within floodplain lagoons of the Macintyre River in the headwaters of the Murray-Darling river system, Australia. Stable isotope analyses revealed that fish consumers derived, on average, 46.9% of their biomass from zooplankton, 38.1% from Coarse Particulate Organic Matter (CPOM) and 24.0% from algae. Ambassis agassizii derived on average 57.6% of its biomass carbon from zooplankton and 20.4–27.8% from algae or CPOM. Leiopotherapon unicolor derived most of its carbon from zooplankton and CPOM (38.3–39.5%), with relatively high contributions from algae compared to the other species (33.3%). An average of 48.4% of the biomass of Nematalosa erebi was derived from zooplankton, with CPOM contributing another 38.1%. Zooplankton was the most important source of organic carbon supporting all three fish species in floodplain lagoons. Phytoplankton, and possibly, particulate organic matter in the seston, are the most likely energy sources for the planktonic suspension feeders (zooplankton) and, consequently, the fish that feed on them. These results indicate a stronger dependence of consumers on autochthonous sources and on locally produced organic matter from the riparian zone (i.e., the Riverine Productivity Model), than on other resources.  相似文献   

13.
In laboratory feeding trials, we analyzed the feeding behavior and selectivity of the cichlid, Sarotherodon galilaeum, for zooplankton prey from Lake Kinneret, Israel. The feeding behavior was dependent on fish size. Fish less than 20 mm SL fed on zooplankton as obligate particulate feeders. Fish from 20 to 42 mm SL fed either as particulate feeders or as filter feeders. Fish larger than 62 mm SL fed as obligate filter feeders. Particulate-feeding fish were size selective and had highest feeding electivities for large-sized zooplankton species. Filter-feeding fish had highest feeding electivities for zooplankton species with poor escape ability. In general, S. galilaeum predation pressure would be greatest on Ceriodaphnia reticulata, a large-bodied and easily captured species which is selected by both particulate-feeding and filter-feeding fish.  相似文献   

14.
The in situ fate of the toxic cyclic heptapeptides, the microcystins, produced by blooms of Microcystis was examined at two stations in a hypertrophic Japanese lake. Microcystins were detected in all samples of Microcystis with quantities varying seasonally and spatially (230–950 μg · g dry wt?1 at St. 1 and 160–746 μg · g dry wt?1 at St. 2) and composed of microcystin-LR, -RR, and-YR. Microcystin-RR was the dominant toxin in most samples. A large amount of microcystin (1.1 μg · L?1) was detected in only one sample of filtered lake water. Accumulation of microcystin in zooplankton was indirectly estimated from a newly developed equation model. Large amounts of microcystin (75–1387 μg · g dry wt?1) were accumulated in the zooplankton community, which consisted of two cladocerans, Bosmina fatalis Burckhardt and Diaphanosoma brachyurum Lieve, and a copepod, Cyclops vicinus Uljanin, that co-occurred with the toxic Microcystis blooms. The maximum percent of microcystin content in zooplankton to that in Microcystis was 202%. Among the three species of zooplankton, only B. fatalis seemed to be responsible for accumulation of the microcystins because C. vicinus appeared to avoid contact with Microcystis cells and D. brachyurum did not consume colonies of Microcystis. Microcystins may be transferred to higher trophic levels through B. fatalis.  相似文献   

15.
To clarify the feeding habits of fishes in surf zones, the gut contents of 19 fish species collected in the surf zone of a sandy beach at Sanrimatsubara, western Japan, were examined. Ontogenetic changes in food preference were recognized in seven species (Mugil cephalus cephalus, Lateolabrax latus, Sillago japonica, Paralichthys olivaceus, Paraplagusia japonica, Takifugu poecilonotus, and Takifugu niphobles). A cluster analysis based on dietary overlaps showed that the surf zone fish assemblage comprised six trophic groups (zooplankton, benthic and epiphytic crustacean, detritus, polychaete, fish, and insect feeders). Of these, the most abundant trophic group was zooplankton feeders, along with benthic and epiphytic crustacean feeders.  相似文献   

16.
The interactions between the higher trophic levels in a shallow eutrophic lake were studied during the course of a year. Three fish species determined the main pathways of organic matter flow within the system: the predominantly planktivorous bream (Abramis brama), the obligate planktivorous smelt (Osmerus eperlanus), and the piscivorous pikeperch (Stizostedion lucioperca). Of the thirteen common zooplankton taxa Daphnia hyalina and cyclopoid copepods were utilized most by the planktivorous fish, while the large production of small cladocerans is almost left unutilized.The seasonal variations of production and consumption are large. This is mainly affected by seasonal variation of the water temperature. The production of O + smelt is efficiently utilized by the pikeperch. Being the most important zooplankton consumer, as well as the most important prey group, O + fish plays a key role in the Tjeukemeer food web.  相似文献   

17.
The development of epilithic cyanobacteria communities in a Mediterranean calcareous stream in the province of Murcia (SE Spain) was studied during the course of one year in an attempt to clarify the environmental variables that influence the production of microcystins. The predominant cyanobacteria were species of Rivularia, which formed conspicuous colonies throughout the year. Seasonally, other species were abundant: Schizothrix fasciculata, Tolypothrix distorta and Phormidium splendidum. All the species collected produced microcystins to a varying degree (up to five varieties), while the benthic community as a whole produced concentrations as high as 20.45 mg m−2. At the same time, the presence of microcystins dissolved in water was confirmed. Among environmental variables, air temperature and silicate content were positively and strongly correlated with total microcystins, while nitrite, nitrate, orthophosphate, calcium and flow were negatively correlated with them. Dissolved microcystins were negatively correlated with microcystin LR, P.A.R. and total phosphorus and positively with rainfall. The production of microcystin YR seems to be regulated by different factors from those regulating the other main varieties (microcystin LR and microcystin RR). The data obtained indicate that all the tested benthic cyanobacteria produced microcystins in this shallow calcareous stream, which may contribute to their predominance in the prevailing conditions. The accumulation of microcystins in mucilaginous colonies of other groups of algae poses new questions concerning the possible ecological function of these compounds and needs further study.  相似文献   

18.
19.
The production of food supplements containing cyanobacteria is a growing worldwide industry. While there have been several reports of health benefits that can be gained from the consumption of these supplements, there have also been a growing number of studies showing the presence of toxins some of which (for example microcystins) are known to affect human health. In this paper, we report a multiplex polymerase chain reaction (PCR) technique that can be used to identify microcystin contamination in dietary supplements produced for human consumption. This method involves a PCR reaction containing three primer pairs, the first of which is used to amplify a 220-bp fragment of 16s rDNA specific to Microcystis, the most common microcystin-producing cyanobacterium. The second primer pair is used to amplify a 300-bp fragment of the mcyA gene, linked to microcystin biosynthesis in Anabaena, Microcystis, and Planktothrix. A third primer pair, used as a positive control, results in the amplification of a 650-bp fragment from the phycocyanin operon common to all cyanobacteria. This technique was found to be useful for detecting the presence of toxigenic Microcystis in all dietary supplements produced from the nontoxic cyanobacterium Aphanizomenon flos-aquae.  相似文献   

20.
Regular occurrences of the cyanobacterium Planktothrix rubescens have been observed in several lakes that have undergone recent re-oligotrophication, e.g. Lake Ammersee. Planktothrix species are known to produce microcystins, potent phosphatase inhibitors that have been associated with morbidities and mortalities in humans and animals. The aim of this study was to characterise the temporal and spatial abundance and toxicity of P. rubescens in Lake Ammersee.P. rubescens cell densities and biovolumes were calculated via fluorescence image analyses. P. rubescens was present during the entire observation period from 1999 to 2004, albeit at different cell densities. Maximum biovolumes of 45 cm3 m?2 were observed in May 2001. Filaments were regularly distributed over the entire water column during winter and stratified in distinct metalimnic layers during summer, reaching maximum cell densities of ≤15,000 (winter) and ≤77,000 cells ml?1 (summer). The results demonstrate that P. rubescens abundance is strongly influenced by water transparency, i.e. illumination in the metalimnion. Moreover, the P. rubescens abundance appears to result from regular phosphate depletion in the epilimnion, possibly additionally benefiting from high nitrogen loads.Microcystin (MC) was detectable in 27 and 38 of 54 seston samples via HPLC and Adda-ELISA measurements, respectively. The main microcystin congeners in the seston samples were [Asp3]-MC-RR and [Asp3,Dhb7]-MC-RR. Microcystin concentrations correlated significantly with the respective phycoerythrin (PE)-concentrations. The variation in the MC/PE-ratios was low suggesting that the microcystin production of P. rubescens in Lake Ammersee is consistent and indicates that the appearance of P. rubescens coincides with measurable microcystin levels. Moreover, the observation of pronounced metalimnic oxygen depletions appears to be causally related to recurring high P. rubescens abundance.In conclusion the results suggest that aquatic organisms such as indigenous fish populations (e.g. coregonids) are regularly confronted with potentially adverse P. rubescens densities, which might provide a possible explanation for the often observed impaired health and growth retardation of coregonid populations in P. rubescens containing pre-alpine lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号