首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two separation techniques, foam separation and colloidal gas aphrons (CGAs), both of which are based on gas–liquid dispersions, are compared as potential applications for protein recovery in downstream processing. The potential advantages of each method are described and the concentration and selectivity achieved with each method, for a range of proteins is discussed. The physical basis of foam separation is the preferential adsorption of surface active species at a gas–liquid interface, with surface inactive species remaining in bulk solution. When a solution containing surface active species is sparged with gas, a foam is produced at the surface: this foam can be collected, and upon collapse contains surface active species in a concentrated form. CGAs are microbubble dispersions (bubble diameters 10–100 μm) with high gas hold ups (>50%) and relatively high stability, which are formed by stirring a surfactant solution at speeds above a critical value (typically around 5000 rpm). It is expected that when proteins are brought into contact with aphrons, protein adsorbs to the surfactant through electrostatic and/or hydrophobic forces. The aphron phase can be separated easily from the bulk solution due to its buoyancy, thus allowing separation of protein in a concentrated form.  相似文献   

2.
Pluronic F-68 (PF-68) is routinely used as a shear-protection additive in mammalian cell cultures. However, most previous studies of its shear protection mechanisms have typically been qualitative in nature and have not covered a wide range of PF-68 and cell concentrations. In this study, interactions between air bubbles along with the associated cell damage were investigated using the novel adenovirus-producing cell line PER.C6, a human embryonic retinoblast transfected with the adenovirus type 5 E1 gene. A wide range of PF-68 and cell concentrations (approximately 3 orders of magnitude) were used in these studies. At low PF-68 concentrations (0.001 g/L), cells had a very high affinity for bubbles, indicated by a more than 10-fold increase in cell concentration in the foam layer liquid versus the bulk liquid. At high PF-68 concentrations ( approximately 3 g/L), however, the cell concentration in the foam layer liquid was only approximately 40% of that in the bulk cell suspension. The number of cells associated with each bubble decreased from approximately 1000 cells at 0.001 g/L PF-68 to approximately 120 cells at 3 g/L PF-68. Despite the lower cell affinity for bubbles at a high PF-68 concentration, at high cell concentrations (10(7) cells/mL and 1 g/L PF-68) significant cell entrapment occurred in the foam layer, on the order of 1000 cells/bubble. For the cells carried by the bubbles, quantitative cell damage data revealed that the probability of cell death from bubble rupture was independent of bulk cell concentration but was affected by PF-68 concentration. These quantitative studies further indicated that even at a low PF-68 concentration of 0.03 g/L, approximately 30% of the attached cells were killed during the bubble rupture process. At the same time, at low PF-68 concentration (<0.1 g/L), significant cell death occurred prior to bubble rupture. On average, a bubble disrupted more cells in the bulk liquid and/or foam layer than during rupture. For both mechanisms, the number of cells damaged by each bubble increased with decreasing PF-68 concentration and increasing bulk cell concentration.  相似文献   

3.
The continuous separation of proteins was performed in a countercurrent gradient chromatography (CGC) system. A magnetically stabilized fluidized bed (MSFB) was used to establish true countercurrent contact of a solid resin with a liquid buffer. STable pH gradients were formed in the system in less than 10 min and remained stable throughout the course of the separation experiment (>2 h). The shape of the pH gradient, which ultimately controls the resolution and purity of the separation, can be controlled by making simple adjustments in the interstitial velocities of the liquid and solid phases. We have performed the separation of myoglobin and human serum albumin (HSA) using this device and achieved concentration factors of 1.75 for myoglobin and 1.2 for HSA. A mathematical model that has no adjustable parameters has been developed that predicts the focusing behaviour and capabilities of the CGC system. Using the model, we have estimated the optimum phase velocities, particle diameters, and equilibrium parameters necessary for achieving high purity and high concentrations. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
Partitioning in two-polymer aqueous phase systems is an established method for the separation, purification and characterization of biomaterials. Because of the relatively slow settling rates of these phases, a consequence of the slight difference in density between them, effort has been directed to speeding up phase separation by various means (e.g., the development of a thin-layer countercurrent distribution apparatus). This has resulted in the more rapid processing of materials. Unlike soluble materials, biological particulates (e.g., cells) generally partition between one of the bulk phases and the interface. The mechanism of cell partitioning involves cell-specific adsorption to droplets of one phase suspended in the other, subsequent to phase mixing, and the delivery of adsorbed cells to the bulk interface as the droplets settle. In this communication we show, using erythrocytes as a model, that speeding up phase separation is counterproductive when partitioning cells and results in reduced efficiency of their separation or subfractionation. The most likely reason for this result is that increasing the speed of phase settling removes the droplets of one phase suspended in the other more rapidly than cells can attach to them, thereby interfering with the mechanism whereby cells partition.  相似文献   

5.
Summary Cell recovery by means of continuous flotation of the Hansenula polymorpha cultivation medium without additives was investigated as a function of the cultivation conditions as well as of the flotation equipment construction and flotation operational parameters. The cell enrichment and separation is improved at high liquid residence times, high aeration rates, small bubble sizes, increasing height of the aerated column, and diameter of the foam column. Increasing cell age and cultivation with nitrogen limitation reduce the cell separation.Symbols CP cell mass concentration in medium g·l–1 - CR cell mass concentration in residue g·l–1 - CS cell mass concentration in foam liquid g·l–1 - V equilibrium foam volume cm3 - V gas flow rate through the aerated liquid column cm3·s–1 - VF feed rate to the flotation column ml/min - 1 V S/V foaminess s - mean liquid residence time in the column s  相似文献   

6.
A unifying hypothesis which might replace some of the many ion pumps which are invoked to describe distribution of ions across living cell membranes is developed quantitatively. Resting cells are assumed to be in a metastable state such that ions are in equilibrium between an extracellular aqueous phase, in which water has the properties of the bulk liquid, and an intracellular aqueous phase in which water has enhanced structure and strongly modified solvent properties. Partition coefficients or medium effects for Na+, K+ and Cl are calculated for several cell types. It is shown that in such a hypothetical cell, possessing no ion pumps there is an amplified Donnan potential between the two phases, its sign determined by the net charge on intracellular proteins, and its magnitude increased by a separation of ions induced by the difference in solvent properties of the water in the two phases. It is shown that a cell in such a metastable state is excitable and can generate an action potential with an inward surge of Na+ followed by an outward surge of K+. An explanation is offered for the transient release of Caa+ from the sarcoplasmic reticulum following excitation of a muscle fibre. Regulation of cellular volume is shown to be a necessary result of the presence in the extracellular solution of a high concentration of Na+, an ion with a very low affinity for intracellular water. It is concluded that the principal cellular functions that are commonly attributed to the sodium pump are also a feature of a cell in a metastable equilibrium state.  相似文献   

7.
A model was developed to evaluate the effects of cells and surfactants on oxygen transfer in surface-aerated bioreactors. The model assumed the presence of serial layers of adsorbed surfactants and microorganisms directly adjacent to the gas-liquid interface due to their surface activities, followed by a stagnant liquid layer to account for the oxygen transfer resistance in the liquid phase. The interfacial surfactant film, although posing as an additional resistance, was found to have negligible effect on the oxygen transfer rate because of its extremely small thickness as compared to the cell monolayer and the stagnant liquid layer. On the other hand, cells affect oxygen transfer by two mechanisms: the biological enhancement due to the respiration of interfacial cells and the physical blocking resulting from the semipermeable nature of cell bodies. Due to the low specific oxygen uptake rates of the sludges, the two mechanisms were found to be of comparable importance in activated-sludge systems; the oxygen transfer enhancement factor, E, varied from about 0.97 to 1.10 depending on the operating conditions. The biological enhancement effect, however, predominated in fermentations of actively growing bacteria. At relatively low agitation speed (e. g., 300 rpm), the value of E could reach about 3 to 5 in fermentations with high cell concentrations. Effects of other operating variables, such as the agitation intensity, the oxygen content in the mixed liquor, and the bulk cell concentration, on biological oxygen transfer enhancement were also studied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
In fixed bed reactors with animal cells immobilized in macroporous carriers sufficient oxygen supply is a critical parameter. For modelling of the oxygen consumption and the oxygen profile in a fixed bed oxygen gradients within the porous carriers and along the length of the fixed bed have to be considered. For the complex geometry of the fixed bed a model structure was assumed, that allows the calculation of the oxygen profile. The model for oxygen supply of the immobilized cells included the transport resistance from the bulk fluid into the carriers and diffusion within the carriers. The model was compared with experimental data obtained with a hybridoma cell line for production of monoclonal antibodies. Model calculations and experimental data agree rather well. The mean volume-specific oxygen uptake rate as an indicator for the cell activity increased with the superficial flow velocity of the bulk liquid flow, and did not depend on the length of the fixed bed in the range tested. This indicates, that the convective transport from the bulk liquid flow between the carriers to the outer surface of the carriers is a dominating transport resistance besides the diffusive oxygen supply within the carriers.  相似文献   

9.
Enrichment and recovery of bovine serum albumin has been examined in a continuous foam separation column. The effects of the operating factors, superficial air velocity, feed flow rate, feed concentration and pH on the above characteristics was investigated. The protein enrichment decreased with the increase in the value of each of these parameters. Protein recovery increased with increasing air velocity, decreased with increasing feed flow rate and did not change very much with increasing feed concentration. Maximum protein recovery was obtained at the isoelectric point (pH 4.8) of the protein. Maximum protein recovery was found to be a strong function of the air velocity in the range 0.05-0.15 cm/s. Further increase in air velocity did not have much effect on recovery because of very large bubbles formed as a result of coalescence. Bubble size was determined as a function of the above factors in the liquid and foam sections of the column. It was found to be dependent on protein concentration, feed flow rate and solution pH. The effect was more significant in the foam section of the column. The bubbles in the foam section were significantly larger (about 3-10 times) than those in the liquid, with a sharp change at the foam-liquid interface. The bubble size measurements were used to calculate the interfacial area and it was shown that the rate of protein removal increases with increasing interfacial area.  相似文献   

10.
Ice formation in aqueous solutions and suspensions involves a number of significant changes and processes in the residual liquid. The resulting effects were described concerning the redistribution of dissolved salts, the behaviour of gaseous solutes and bubble formation, the rejection and entrapment of second-phase particles. This set of conditions is also experienced by biological cells subjected to freezing. The influences of ice formation in that respect and their relevance for cryopreservation were considered as well. A model of transient heat conduction and solute diffusion with a planar ice front, propagating through a system of finite length was found to be in good agreement with measured salt concentration profiles. The spacing of the subsequently developing columnar solidification pattern was of the same order of magnitude as the pertubation wavelengths predicted from the stability criterion. Non-planar solidification of binary salt solutions was described by a pure heat transfer model under the assumption of local thermodynamic equilibrium. The rejection of gaseous solutes and the resulting gas concentration profile ahead of a planar ice front has been estimated by means of a test bubble method, yielding a distribution coefficient of 0.05 for oxygen. The nucleation of gas bubbles has been observed to occur at slightly less than 20-fold supersaturation. The subsequent radial growth of the bubbles obeys a square-root time dependence as expected from a diffusion controlled model until the still expanding bubbles become engulfed by the advancing ice-liquid interface. The maximum bubble radii decrease for increasing ice front velocities. The transition between repulsion and entrapment of spherical latex particles by an advancing planar ice-front has been characterized by a critical value of the velocity of the solidification interface. The critical velocity is inversely proportional to the particle radius as suggested by models assuming an undisturbed ice front. The increase of the critical velocity for increasing thermal gradients shows good agreement with a theoretically predicted square-root type of dependence. Critical velocities have also been measured for yeast and red blood cells. The effect of freezing on biological cells has been analyzed for human lymphocytes and erythrocytes. The reduction of cell volume observed during non-planar freezing agrees reasonably well with shrinkage curves calculated from a water transport model. The probability of intracellular ice formation has been characterized by threshold cooling rates above which the amount of water remaining within the cell is sufficient for crystallization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A foam fractionation apparatus was prepared to aid protein separation at the gas–liquid interface. Using lysozyme as a model protein, we investigated the alteration of enzymatic and optical activities through foaming. The lysozyme transferred to the gaseous nitrogen phase after 5 min of bubbling with no exogenous detergent. The bacteriolytic and optical activities of lysozyme from the foamate were nearly equivalent to those of the original lysozyme. This result indicated that lysozyme did not irreversibly denature during foam fractionation. We then performed protein separation using binary mixtures of lysozyme and α-amylase. When the two proteins were dissolved in bulk solution of pH 10.5, which is close to the isoelectric point (pI) of lysozyme (10.7), selective fractionation of lysozyme from the foam was observed. Indeed, this fractionation was identical to that from a single component solution of lysozyme. Similarly, selective fractionation of α-amylase was achieved in pH 3.0 buffer. Furthermore, circular dichroism (CD) and subsequent model fitting revealed that the protein had a reduced or nearly complete absence of α-helical content, whereas the amount of β-sheet structure and random coil was elevated in the buffer conditions that promoted protein adsorption. These results indicate that a pH-induced conformational transition might correlate with protein foaming.  相似文献   

12.
It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
The internal elastic lamina (IEL), which separates the arterial intima from the media, affects macromolecular transport across the medial layer. In the present study, we have developed a two-dimensional numerical simulation model to resolve the influence of the IEL on convective-diffusive transport of macromolecules in the media. The model considers interstitial flow in the medial layer that has a complex entrance condition because of the presence of leaky fenestral pores in the IEL. The IEL was modeled as an impermeable barrier to both water and solute except for the fenestral pores that were assumed to be uniformly distributed over the IEL. The media were modeled as a heterogeneous medium composed of an array of smooth muscle cells (SMCs) embedded in a continuous porous medium representing the interstitial proteoglycan and collagen fiber matrix. Results for ATP and low-density lipoprotein (LDL) demonstrate a range of interesting features of molecular transport and uptake in the media that are determined by considering the balance among convection, diffusion, and SMC surface reaction. The ATP concentration distribution depends strongly on the IEL pore structure because ATP fluid-phase transport is dominated by diffusion emanating from the fenestral pores. On the other hand, LDL fluid-phase transport is only weakly dependent on the IEL pore structure because convection spreads LDL laterally over very short distances in the media. In addition, we observe that transport of LDL to SMC surfaces is likely to be limited by the fluid phase (surface concentration less than bulk concentration), whereas ATP transport is limited by reaction on the SMC surface (surface concentration equals bulk concentration).  相似文献   

14.
Estimation of overhead production enrichment in continuous foam separation was conducted with a surfactant: sodium n-dodecylbenzenesulfonate (SDBS) and soluble proteins: ovalbumin (OA) and hemoglobin (HB). Axial profiles of the volumetric flow rate and the concentration of the collapsed foam liquid within the column were measured, and the enrichment ratio and the liquid holdup in axial direction were determined experimentally. The proposed model was fitted to the experimental results obtained with various experimental conditions (superficial gas velocity, feed concentration and pH) and was in reasonable agreement with the experimental data by using the least square regression. The present model makes it possible to estimate the foamate concentration at a desired foam height.  相似文献   

15.
A method for estimating the oxygen availability in plant cell cultures grown in stationary liquid media (e.g. many protoplast cultures) was developed. The method is based on short-term measurements of respiration rate versus oxygen concentration on a sample of cells, suspended in liquid media. From such data it is possible to estimate the oxygen concentration at the bottom of a stagnant liquid culture, by calculating the amount of oxygen reaching the cells by diffusion. As an example, rape (Brassica napus L. cv. Omega) hypocotyl protoplasts were grown with different oxygen concentrations at the site of the cells, obtained by varying the cell density, the height of the liquid layer and the oxygen content of the gas phase. The number of surviving calli was positively correlated with the estimated oxygen availability in the range between 60 and 350 M O2, below 60 M all cells died. This indicates that oxygen availability can be a limiting factor in the range usually encountered in protoplast cultures, and that the method can be useful when designing optimal growth conditions for stationary cultures of plant cells.Abbreviations C1 bulk oxygen concentration in agitated medium - Co oxygen concentration in medium at the gas-liquid interface, in equilibrium with the gas - Cx oxygen concentration at cell level - D diffusion constant of oxygen in water - KLa oxygen transfer rate - l height of liquid above cells - n number of cells per ml - Rx respiration rate per cell  相似文献   

16.
The surfactant properties of aqueous protein mixtures (ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation fluorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two-photon excitation fluorescence microscopy of nest foams treated with fluorescent marker (anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H(2)O/D(2)O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied (0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of approximately 20 angstroms, a middle layer of approximately 30 angstroms, and a more diffuse submerged layer projecting some 25 angstroms into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.  相似文献   

17.
A sparged gas bubble floating at the liquid interface has a liquid film which drains and thins until the film spontaneously ruptures at a point. This causes rapid retraction of the film, forming a rim of collected fluid. This rim moves at a constant velocity of about 3 m/s and any cells in the bubble film are rapidly accelerated to this velocity in the moving rim. Half of the surface energy originally in the thin film is converted to kinetic energy of the rim, while the rest is dissipated in this rim. The rate of energy dissipation per mass of rim fluid is approximately 9000 m2/s3, which corresponds to a Kolmogorov eddy size of 3.2 microns in fully developed turbulence or a shear stress of 95 N/m2 in laminar flow. Either of these limiting cases presents an environment in which rapid cell death would be expected. Experiments with Sf-9 insect cells suggest that the cell concentration in these thin films is 0.6 times the bulk liquid concentration and that about 20% of these cells are killed when the film ruptures. An equation based on this mechanism accurately predicts the death rate.  相似文献   

18.
Atherosclerosis is a complex inflammatory disease process involving an array of cell types and interactions. Although macrophage foam cells and vascular smooth muscle cells constitute the bulk of the atherosclerotic lesion, other cell types have been implicated in this disease process as well. These cellular components of both innate and adaptive immunity are involved in modulating the response of macrophage foam cells and vascular smooth muscle cells to the retained and modified lipids in the vessel wall as well as in driving the chronic vascular inflammation that characterizes this disease. In this review, the involvement of a number of less prominent leukocyte populations in the pathogenesis of atherosclerosis is discussed. More specifically, the roles of natural killer cells, mast cells, neutrophils, dendritic cells, gammadelta T-cells, natural killer T-cells, regulatory T-cells, and B-cells are addressed.  相似文献   

19.
Variability in poloxamer 188 (P188) raw material, which is routinely used in cell culture media to protect cells from hydrodynamic forces, plays an important role in the process performance. Even though tremendous efforts have been spent to understand the mechanism of poloxamer's protection, the root cause for lot‐to‐lot variation was not clear. A recent study reported that the low performance was not due to toxicity but inefficiency to protect cells (Peng et al., Biotechnol Prog. 2014;30:1411–1418). In this study, it was demonstrated for the first time that the addition of other surfactants even at a very low level can interfere with P188 resulting in a loss of efficiency. It was also found that the performance of P188 lots correlated well with its foam stability. Foam generated from low performing lots in baffled shaker flask lasts longer, which suggests that the components in the foam layers are different. The spiking of foam generated from a low performing lot into the media containing a high performance lot resulted in cell damage and low growth. Analytical studies using size exclusion chromatography (SEC) identified differences in high molecular weight (HMW) species present in the P188 lots. These differences are much clearer when comparing the HMW region of the SEC chromatogram of foam vs. bulk liquid samples. This study shows that low performing lots have enriched HMW species in foam samples due to high hydrophobicity, which can be potentially used as a screening assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:767–775, 2016  相似文献   

20.
In this article the effect of variations in the fatty acid chain of oligofructose fatty acid esters (OFAE) on foamability and foam stability is described. First, oligofructose (OF) mono-esters containing saturated fatty acid chains ranging between C4 and C18 were studied. Additionally, a mono-ester containing a C16 mono-unsaturated fatty acid chain and a C12 di-ester were studied. Finally, to investigate the influence of the size of the hydrophilic group, commercially available sucrose esters were studied. The surface tension and surface rheological properties of air/water interfaces stabilized by the esters were determined, as well as the foaming properties of the esters, at a bulk concentration of 0.2 % (w/v). OF mono-esters with intermediate fatty acid chain lengths (C10-C16) were able to migrate quickly to the interface producing foams with small bubbles (0.4 mm), a relatively narrow bubble size distribution, and a high stability. For oligofructose mono-esters containing fatty acids C4 and C8, the bulk concentration of 0.2 % (w/v) was below the CMC, resulting in insufficient surface coverage, and low foamability and foam stability. The OF C18 mono-ester and the OF C12 di-ester were slow to migrate to the interface resulting in low foamability. Despite similar surface tension values, the foam half-life time of OFAE was higher than of the corresponding sucrose esters. OFAE gave higher surface dilatational moduli compared to sucrose esters. Based on the frequency dependence of the modulus and analysis of Lissajous plots, we propose that OFAE may be forming a soft glass at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号